Articles | Volume 14, issue 2
https://doi.org/10.5194/amt-14-1225-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-1225-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Facility for production of ambient-like model aerosols (PALMA) in the laboratory: application in the intercomparison of automated PM monitors with the reference gravimetric method
Stefan Horender
Federal Institute of Metrology METAS, Bern-Wabern, 3003, Switzerland
Kevin Auderset
Federal Institute of Metrology METAS, Bern-Wabern, 3003, Switzerland
Paul Quincey
National Physical Laboratory (NPL), Teddington, London, UK
Stefan Seeger
Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
Søren Nielsen Skov
Bioengineering and Environmental Technology, Danish Technological Institute (DTI), Aarhus, Denmark
Kai Dirscherl
Danish National Metrology Institute (DFM), Kogle Alle 5, 2970 Hørsholm, Denmark
Thomas O. M. Smith
National Physical Laboratory (NPL), Teddington, London, UK
Katie Williams
National Physical Laboratory (NPL), Teddington, London, UK
Camille C. Aegerter
Federal Institute of Metrology METAS, Bern-Wabern, 3003, Switzerland
Daniel M. Kalbermatter
Federal Institute of Metrology METAS, Bern-Wabern, 3003, Switzerland
François Gaie-Levrel
Laboratoire national de métrologie et d'essais (LNE), Paris, France
Konstantina Vasilatou
CORRESPONDING AUTHOR
Federal Institute of Metrology METAS, Bern-Wabern, 3003, Switzerland
Related authors
No articles found.
Wenche Aas, Thérèse Salameh, Robert Wegener, Heidi Hellén, Jean-Luc Jaffrezo, Pontus Roldin, Elisabeth Alonso-Blanco, Andres Alastuey, Crist Amelynck, Jgor Arduini, Benjamin Bergmans, Marie Bertrand, Agnes Borbon, Efstratios Bourtsoukidis, Laetitia Bouvier, David Butterfield, Iris Buxbaum, Darius Ceburnis, Anja Claude, Aurélie Colomb, Sophie Darfeuil, James Dernie, Maximilien Desservettaz, Elías Díaz-Ramiro, Marvin Dufresne, René Dubus, Mario Duval, Marie Dury, Anna Font, Kirsten Fossum, Evelyn Freney, Gotzon Gangoiti, Yao Ge, Maria Carmen Gomez, Francisco J. Gómez-Moreno, Marie Gohy, Valérie Gros, Paul Hamer, Bryan Hellack, Hartmut Herrmann, Robert Holla, Adéla Holubová, Niels Jensen, Tuija Jokinen, Matthew Jones, Uwe Käfer, Lukas Kesper, Dieter Klemp, Dagmar Kubistin, Angela Marinoni, Martina Mazzini, Vy Ngoc Thuy Dinh, Jurgita Ovadnevaite, Tuukka Petäjä, Miguel Portillo-Estrada, Jitka Přívozníková, Jean-Philippe Putaud, Stefan Reimann, Laura Renzi, Veronique Riffault, Stuart Ritchie, Chris Robins, Begoña Artíñano Rodríguez de Torres, Laurent Poulain, Julian Rüdiger, Agnieszka Sanocka, Estibaliz Saez de Camara Oleaga, Niels Schoon, Roger Seco, Ivan Simmons, Leïla Simon, David Simpson, Emmanuel Tison, August Thomasson, Svetlana Tsyro, Marsailidh Twigg, Toni Tykkä, Bert Verreyken, Ana Maria Yáñez-Serrano, Sverre Solberg, Karen Yeung, Ilona Ylivinkka, Karl Espen Yttri, Ågot Watne, and Katie Williams
EGUsphere, https://doi.org/10.5194/egusphere-2025-6166, https://doi.org/10.5194/egusphere-2025-6166, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
A one-week intensive VOC and organic-tracer campaign during the 2022 European heatwave showed contributions from both biogenic and anthropogenic sources to ozone and SOA peaks, while model–observation differences underline the need for better characterization of sources and formation pathways.
Tobias Hammer, Diana Roos, Barouch Giechaskiel, Anastasios Melas, and Konstantina Vasilatou
Aerosol Research, 2, 261–270, https://doi.org/10.5194/ar-2-261-2024, https://doi.org/10.5194/ar-2-261-2024, 2024
Short summary
Short summary
More than 35 000 particle counters designed for the periodic technical inspection of diesel engine exhaust have been placed on the European market in the past few years. This work shows that the counting efficiency of these instruments depends on the properties of the test aerosols, even if all of them are combustion-based soot of similar mobility diameter. The aim of this study is to promote harmonisation of measurement procedures in the field of emission control.
Baseerat Romshoo, Mira Pöhlker, Alfred Wiedensohler, Sascha Pfeifer, Jorge Saturno, Andreas Nowak, Krzysztof Ciupek, Paul Quincey, Konstantina Vasilatou, Michaela N. Ess, Maria Gini, Konstantinos Eleftheriadis, Chris Robins, François Gaie-Levrel, and Thomas Müller
Atmos. Meas. Tech., 15, 6965–6989, https://doi.org/10.5194/amt-15-6965-2022, https://doi.org/10.5194/amt-15-6965-2022, 2022
Short summary
Short summary
Black carbon (BC) is often assumed to be spherically shaped, causing uncertainties in its optical properties when modelled. This study investigates different modelling techniques for the optical properties of BC by comparing them to laboratory measurements. We provide experimental support for emphasizing the use of appropriate size representation (polydisperse size method) and morphological representation (aggregate morphology) for optical modelling and parameterization scheme development of BC.
Luka Drinovec, Uroš Jagodič, Luka Pirker, Miha Škarabot, Mario Kurtjak, Kristijan Vidović, Luca Ferrero, Bradley Visser, Jannis Röhrbein, Ernest Weingartner, Daniel M. Kalbermatter, Konstantina Vasilatou, Tobias Bühlmann, Celine Pascale, Thomas Müller, Alfred Wiedensohler, and Griša Močnik
Atmos. Meas. Tech., 15, 3805–3825, https://doi.org/10.5194/amt-15-3805-2022, https://doi.org/10.5194/amt-15-3805-2022, 2022
Short summary
Short summary
A new photothermal interferometer (PTAAM-2λ) for artefact-free determination of the aerosol absorption coefficient at two wavelengths is presented. The instrument is calibrated with NO2 and polydisperse nigrosin, resulting in very low uncertainties of the absorption coefficients: 4 % at 532 nm and 6 % at 1064 nm. The instrument’s performance makes the PTAAM-2λ a strong candidate for reference measurements of the aerosol absorption coefficient.
Daniel M. Kalbermatter, Griša Močnik, Luka Drinovec, Bradley Visser, Jannis Röhrbein, Matthias Oscity, Ernest Weingartner, Antti-Pekka Hyvärinen, and Konstantina Vasilatou
Atmos. Meas. Tech., 15, 561–572, https://doi.org/10.5194/amt-15-561-2022, https://doi.org/10.5194/amt-15-561-2022, 2022
Short summary
Short summary
Soot particles with varying amounts of secondary organic matter coating were generated and used to compare a series of aerosol-absorption-measuring instruments: filter-based and photoacoustic instruments as well as photo-thermal interferometers. Significant deviations in the response of the instruments were observed depending on the amount of secondary organic coating. The system can be used for the inter-comparison and characterisation of instruments.
Gian Lieberherr, Kevin Auderset, Bertrand Calpini, Bernard Clot, Benoît Crouzy, Martin Gysel-Beer, Thomas Konzelmann, José Manzano, Andrea Mihajlovic, Alireza Moallemi, David O'Connor, Branko Sikoparija, Eric Sauvageat, Fiona Tummon, and Konstantina Vasilatou
Atmos. Meas. Tech., 14, 7693–7706, https://doi.org/10.5194/amt-14-7693-2021, https://doi.org/10.5194/amt-14-7693-2021, 2021
Short summary
Short summary
Today there is no standard procedure to validate bioaerosol and pollen monitors. Three instruments were tested, focusing on detecting particles of different sizes. Only one instrument was able to detect the smallest particles (0.5 µm Ø), whereas the others performed best at the largest tested particles (10 µm Ø). These results are the first step towards a standardised validation procedure. The need for a reference counting method for larger particles (pollen grains: 10–200 µm Ø) was emphasised.
Baseerat Romshoo, Thomas Müller, Sascha Pfeifer, Jorge Saturno, Andreas Nowak, Krzysztof Ciupek, Paul Quincey, and Alfred Wiedensohler
Atmos. Chem. Phys., 21, 12989–13010, https://doi.org/10.5194/acp-21-12989-2021, https://doi.org/10.5194/acp-21-12989-2021, 2021
Short summary
Short summary
Modifications in the optical properties of black carbon (BC) due to ageing are presented and quantified in this study using a state-of-the-art description scheme of BC fractal aggregates. It is shown that the relative change in BC radiative forcing can be larger than 50 % as a function of changing fractal dimension and organic content. A comprehensive parameterization scheme for coated BC optical properties is developed with applications for modelling, ambient, and laboratory-based BC studies.
Cited articles
Al-Attabi, R., Dumme, L. F., Kong, L., Schütz, J. A., and Morsi, Y.: High Efficiency
Poly(acrylonitrile) Electrospun Nanofiber Membranes for Airborne Nanomaterials Filtration,
Adv. Eng. Mater., 20, 1700572, https://doi.org/10.1002/adem.201700572, 2017.
Asbach, C., Hellack, B., Schumacher, S., Bässler, M., Spreitzer, M., Pohl, T.,
Weber, K., Monz, C., Bieder, S., Schultze, T., and Todea, A.: Anwendungsmöglichkeiten und
Grenzen kostengünstiger Feinstaubsensoren, Gefahrstoffe-Reinhaltung der Luft, 78, 242–250,
2018.
Bruns, E. A., El Haddad, I., Keller, A., Klein, F., Kumar, N. K., Pieber, S. M., Corbin,
J. C., Slowik, J. G., Brune, W. H., Baltensperger, U., and Prévôt, A. S. H.: Inter-comparison of
laboratory smog chamber and flow reactor systems on organic aerosol yield and composition,
Atmos. Meas. Tech., 8, 2315–2332, https://doi.org/10.5194/amt-8-2315-2015, 2015.
Cavalli, F., Viana, M., Yttri, K. E., Genberg, J., and Putaud, J.-P.: Toward a
standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: the
EUSAAR protocol, Atmos. Meas. Tech., 3, 79–89, https://doi.org/10.5194/amt-3-79-2010, 2010.
CEN/TC 264/WG-15: European Standard EN 12341: Ambient air – Standard gravimetric measurement method for the determination of the PM10 or PM2.5 mass concentration of suspended particulate matter, CEN-CENELEC Management Centre, Brussels, Belgium, 2014.
Chowdhury, Z., Campanella, L., Gray, C., Al Masud, A., Marter-Kenyon, J., Pennise, D.,
Charron, D., and Zuzhang, X.: Measurement and modeling of indoor air pollution in rural households
with multiple stove interventions in Yunnan, China, Atmos. Environ., 67, 161–169,
https://doi.org/10.1016/j.atmosenv.2012.10.041, 2013.
Chung, A., Chang, D. P. Y., Kleeman, M. J., Perry, K. D., Cahill, T. A., Dutcher, D.,
McDougall, E. M., and Stroud, K.: Comparison of Real-Time Instruments Used To Monitor Airborne
Particulate Matter, J. Air Waste Manage. Assoc., 51, 109–120,
https://doi.org/10.1080/10473289.2001.10464254, 2001.
Corbin, J. C., Lohmann, U., Sierau, B., Keller, A., Burtscher, H., and Mensah, A. A.:
Black carbon surface oxidation and organic composition of beech-wood soot aerosols,
Atmos. Chem. Phys., 15, 11885–11907, https://doi.org/10.5194/acp-15-11885-2015, 2015a.
Corbin, J. C., Keller, A., Lohmann, U., Burtscher, H., Sierau, B., and Mensah, A. A.:
Organic Emissions from a Wood Stove and a Pellet Stove Before and After Simulated Atmospheric
Aging Organic Emissions from a Wood Stove and a Pellet Stove Before and After Simulated
Atmospheric Aging, Aerosol Sci. Technol., 49, 1037–1050, https://doi.org/10.1080/02786826.2015.1079586,
2015b.
Crilley, L. R., Knibbs, L. D., Miljevic, B., Cong, X., Fairfull-Smith, K. E., Bottle,
S. E., Ristovski, Z. D., Ayoko, G. A., and Morawska, L.: Concentration and oxidative potential of
on-road particle emissions and their relationship with traffic composition: Relevance to exposure
assessment, Atmos. Environ., 59, 533–539, https://doi.org/10.1016/j.atmosenv.2012.05.039, 2012.
Crilley, L. R., Shaw, M., Pound, R., Kramer, L. J., Price, R., Young, S., Lewis, A. C.,
and Pope, F. D.: Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient
air monitoring, Atmos. Meas. Tech., 11, 709–720, https://doi.org/10.5194/amt-11-709-2018, 2018.
Davison, J. A., Wylie, C. E., McGladdery, C. E., Fettes, C., Haggett, E. F. and
Ramzan, P. H. L.: Airborne particulate size and concentrations in five Thoroughbred training yards
in Newmarket (UK), Vet. J., 248, 48–50, https://doi.org/10.1016/j.tvjl.2019.04.006, 2019.
Di Antonio, A., Olalekan, M. A. P., Ouyang, B., Saffell, J., and Jones, R. L.:
Developing a Relative Humidity Correction for Low-Cost Sensors Measuring Ambient Particulate
Matter, Sensors, 18, 2790, https://doi.org/10.3390/s18092790, 2018.
EC-WG: Guidance to the demonstration of equivalence of ambient air monitoring methods,
Report by an EC Working Group on Guidance for the Demonstration of Equivalence, available at:
http://ec.europa.eu/environment/air/quality/legislation/assessment.htm (last access: 31 August 2020), 2010.
Eisner, A. D. and Wiener, R. W.: Discussion and Evaluation of the Volatility Test for
Equivalency of Other Methods to the Federal Reference Method for Fine Particulate Matter, Aerosol
Sci. Technol., 36, 433–440, https://doi.org/10.1080/027868202753571250, 2002.
El-Zanan, H. S., Lowenthal, D. H., Zielinska, B., Chow, J. C., and Kumar, N.:
Determination of the organic aerosol mass to organic carbon ratio in IMPROVE samples, Chemosphere,
60, 485–496, https://doi.org/10.1016/j.chemosphere.2005.01.005, 2005.
Ess, M. N. and Vasilatou, K.: Characterization of a new miniCAST with diffusion flame
and premixed flame options: Generation of particles with high EC content in the size range
30 nm to 200 nm, Aerosol Sci. Technol., 53, 29–44,
https://doi.org/10.1080/02786826.2018.1536818, 2019.
Ess, M. N., Berto, M., Keller, A., Gysel, M., and Vasilatou, K.: Laboratory generated
coated-soot particles with tunable, well-controlled properties using a miniCAST BC and a micro
smog chamber (to be submitted), 2020.
European Parliament: Directive 2008/50/EC of the European Parliament and of the Council
of 21 May 2008 on ambient air quality and cleaner air for Europe (OJ L 152, 11.6.2008, p. 1–44),
available at: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX{%}3A32008L0050
(last access: 31 August 2020), 2008.
European Parliament: Consolidated text: Directive 2008/50/EC of the European Parliament
and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe, available at:
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02008L0050-20150918 (last access:
31 August 2020), 2015.
FOEN: Fine particles, available at:
https://www.bafu.admin.ch/bafu/en/home/topics/air/info-specialists/air-quality-in-switzerland/fine-particles.html
(last access: 31 August 2020), 2018.
Fuzzi, S., Baltensperger, U., Carslaw, K., Decesari, S., Denier van der Gon, H.,
Facchini, M. C., Fowler, D., Koren, I., Langford, B., Lohmann, U., Nemitz, E., Pandis, S.,
Riipinen, I., Rudich, Y., Schaap, M., Slowik, J. G., Spracklen, D. V., Vignati, E., Wild, M.,
Williams, M., and Gilardoni, S.: Particulate matter, air quality and climate: lessons learned and
future needs, Atmos. Chem. Phys., 15, 8217–8299, https://doi.org/10.5194/acp-15-8217-2015, 2015.
Grall, S., Debéda, H., Dufour, I., and Aubry, V.: Screen-Printed Microcantilevers
for Environmental Sensing, Proceedings, 2, 722, https://doi.org/10.3390/proceedings2130722, 2018.
Grzyb, J. and Lenart-Boron, A.: Bacterial bioaerosol concentration and size
distribution in the selected animal premises in a zoological garden, Aerobiologia (Bologna), 35,
253–268, https://doi.org/10.1007/s10453-018-09557-9, 2019.
Hauck, H., Berner, A., Gomiscek, B., Stopper, S., Puxbauma, H., Kundi, M. and
Preining, O.: On the equivalence of gravimetric PM data with TEOM and beta-attenuation
measurements, J. Aerosol Sci., 35, 1135–1149, https://doi.org/10.1016/j.jaerosci.2004.04.004, 2004.
Heal, M. R., Beverland, I. J., McCabe, M., Hepburn, W., and Agius, R. M.:
Intercomparison of five PM10 monitoring devices and the implications for exposure measurement in
epidemiological research, J. Environ. Monit., 2, 455–461, https://doi.org/10.1039/b002741n, 2000.
Hogrefe, O., Drewnick, F., Garland Lala, G., Schwab, J. J., and Demerjian, K. L.:
Development, Operation and Applications of an Aerosol Generation, Calibration and Research
Facility Special Issue of Aerosol Science and Technology on Findings from the Fine Particulate
Matter Supersites Program, Aerosol Sci. Technol., 38, 196–214, https://doi.org/10.1080/02786820390229516,
2004.
Horender, S., Auderset, K., and Vasilatou, K.: Facility for calibration of optical and
condensation particle counters based on a turbulent aerosol mixing tube and a reference optical
particle counter, Rev. Sci. Instrum., 90, 075111, https://doi.org/10.1063/1.5095853, 2019.
Hueglin, C., Gehrig, R., Baltensperger, U., Gysel, M., Monn, C., and Vonmont, H.:
Chemical characterisation of PM2.5, PM10 and coarse particles at urban,
near-city and rural sites in Switzerland, Atmos. Environ., 39, 637–651,
https://doi.org/10.1016/j.atmosenv.2004.10.027, 2005.
Jayaratne, R., Liu, X., Ahn, K.-H., Asumadu-Sakyi, A., Fisher, G., Gao, J., Mabon, A.,
Mazaheri, M., Mullins, B., Nyarku, M., Ristovski, Z., Scorgie, Y., Phong, T., Dunbabin, M., and
Morawska, L.: Low-cost PM2.5 Sensors: An Assessment of their Suitability for Various Applications,
Aerosol Air Qual. Res., 20, 520–532, https://doi.org/10.4209/aaqr.2018.10.0390, 2020.
Keller, A. and Burtscher, H.: A continuous photo-oxidation flow reactor for a defined
measurement of the SOA formation potential of wood burning emissions, J. Aerosol Sci., 49, 9–20,
https://doi.org/10.1016/j.jaerosci.2012.02.007, 2012.
Kim, K.-H., Kabir, E., and Kabir, S.: A review on the human health impact of airborne
particulate matter, Environ. Int., 74, 136–143, https://doi.org/10.1016/j.envint.2014.10.005, 2015.
Kingham, S., Durand, M., Aberkane, T., Harrison, J., Wilson, J. G., and Epton, M.:
Winter comparison of TEOM, MiniVol and DustTrak PM10 monitors in a woodsmoke environment,
Atmos. Environ., 40, 338–347, https://doi.org/10.1016/j.atmosenv.2005.09.042, 2006.
Lee, J. H., Hopke, P. K., Holsen, T. M., and Polissar, A. V: Evaluation of Continuous
and Filter-Based Methods for Measuring PM2.5 Mass Concentration, Aerosol Sci. Technol., 39,
290–303, https://doi.org/10.1080/027868290929323, 2005.
Liu, D.-Y., Prather, K. A., and Hering, S. V.: Variations in the Size and Chemical
Composition of Nitrate-Containing Particles in Riverside, CA, Aerosol Sci. Technol., 33, 71–86,
https://doi.org/10.1080/027868200410859, 2000.
Liu, D., Zhang, Q., Jiang, J., and Chen, D.: Performance calibration of low-cost and
portable particular matter (PM) sensors, J. Aerosol Sci., 112, 1–10,
https://doi.org/10.1016/j.jaerosci.2017.05.011, 2017.
Manibusan, S. and Mainelis, G.: Performance of Four Consumer-grade Air Pollution
Measurement Devices in Different Residences, Aerosol Air Qual. Res., 20, 217–230,
https://doi.org/10.4209/aaqr.2019.01.0045, 2020.
McNamara, M. L., Noonan, C. W., and Ward, T. J.: Correction Factor for Continuous
Monitoring of Wood Smoke Fine Particulate Matter, Aerosol Air Qual. Res., 11, 315–322,
https://doi.org/10.4209/aaqr.2010.08.0072, 2011.
Meyer, M. B., Patashnick, H., Ambs, J. L., and Rupprecht, E.: Development of a Sample
Equilibration System for the TEOM Continuous PM Monitor, J. Air Waste Manage. Assoc., 50,
1345–1349, https://doi.org/10.1080/10473289.2000.10464180, 2000.
Niedermeier, D., Voigtländer, J., Schmalfuß, S., Busch, D., Schumacher, J., Shaw,
R. A., and Stratmann, F.: Characterization and first results from LACIS-T: a moist-air wind tunnel
to study aerosol–cloud–turbulence interactions, Atmos. Meas. Tech., 13, 2015–2033,
https://doi.org/10.5194/amt-13-2015-2020, 2020.
Osán, J., Börcsök, E., Czömpöly, O., Dian, C., Groma, V., Stabile,
L., and Török, S.: Experimental evaluation of the in-the-field capabilities of
total-reflection X-ray fluorescence analysis to trace fine and ultrafine aerosol particles in
populated areas, Spectrochim. Acta Part B, 167, 105852, https://doi.org/10.1016/j.sab.2020.105852, 2020.
Papapostolou, V., Zhang, H., Feenstra, B. J., and Polidori, A.: Development of an
environmental chamber for evaluating the performance of low-cost air quality sensors under
controlled conditions, Atmos. Environ., 171, 82–90, https://doi.org/10.1016/j.atmosenv.2017.10.003, 2017.
Putaud, J.-P., Dingenen, R. Van, Alastuey, A., Bauer, H., Birmili, W., Cyrys, J.,
Flentje, H., Fuzzi, S., Gehrig, R., Hansson, H. C., Harrison, R. M., Herrmann, H., Hitzenberger,
R., Hüglin, C., Jones, A. M., Kasper-Giebl, A., Kiss, G., Kousa, A., Kuhlbusch, T. A. J.,
Löschau, G., Maenhaut, W., Molnar, A., Moreno, T., Pekkanen, J., Perrino, C., Pitz, M.,
Puxbaum, H., Querol, X., Rodriguez, S., Salma, I., Schwarz, J., Smolik, J., Schneider, J.,
Spindler, G., ten Brink, H., Tursic, J., Viana, M., Wiedensohler, A., and Raes, F.: A European
aerosol phenomenology - 3: Physical and chemical characteristics of particulate matter from 60
rural, urban, and kerbside sites across Europe, Atmos. Environ., 44, 1308–1320,
https://doi.org/10.1016/j.atmosenv.2009.12.011, 2010.
Schwab, J. J., Hogrefe, O., Demerjian, K. L., and Ambs, J. L.: Laboratory
Characterization of Modified Tapered Element Oscillating Microbalance Samplers, J. Air Waste
Manage. Assoc., 54, 1254–1263, https://doi.org/10.1080/10473289.2004.10471019, 2004.
Schwab, J. J., Felton, H. D., Rattigan, O. V., and Demerjian, K. L.: New York State Urban
and Rural Measurements of Continuous PM 2.5 Mass by FDMS, TEOM, and BAM, J. Air Waste
Manage. Assoc., 56, 372–383, https://doi.org/10.1080/10473289.2006.10464523, 2006.
Sofowote, U., Su, Y., Bitzos, M. M., and Munoz, A.: Improving the correlations of
ambient tapered element oscillating microbalance PM2.5 data and SHARP 5030 Federal Equivalent
Method in Ontario: A multiple linear regression analysis, J. Air Waste Manage. Assoc., 61,
104–114, https://doi.org/10.1080/10962247.2013.833145, 2014.
Su, Y., Sofowote, U., Debosz, J., White, L., and Munoz, A.: Multi-Year Continuous PM2.5
Measurements with the Federal Equivalent Method SHARP 5030 and Comparisons to Filter-Based and
TEOM Measurements in Ontario, Canada, Atmosphere (Basel), 9, 1–13, https://doi.org/10.3390/atmos9050191,
2018.
US-EPA: National Ambient Air Quality Standards published by the United States
Environment Protection Agency, available at:
https://www.epa.gov/criteria-air-pollutants/naaqs-table (last access: 31 August 2020), 2016.
Viana, M., Rivas, I., Reche, C., Fonseca, A., Perez, N., Querol, X., Alastuey, A.,
Alvarez-Pedrerol, M., and Sunyer, J.: Field comparison of portable and stationary instruments for
outdoor urban air exposure assessments, Atmos. Environ., 123, 220–228,
https://doi.org/10.1016/j.atmosenv.2015.10.076, 2015.
Wall, S. M., Walter, J., and Ondo, J. L.: Measurement of aerosol size distributions for
nitrate and major ionic species, Atmos. Environ., 22, 1649–1656,
https://doi.org/10.1016/0004-6981(88)90392-7, 1988.
Wallace, L. A., Wheeler, A. J., Kearney, J., Van Ryswyk, K., You, H., Kulka, R. H.,
Rasmussen, P. E., Brook, J. R., and Xu, X.: Validation of continuous particle monitors for
personal, indoor, and outdoor exposures, J. Expo. Sci. Environ. Epidemiol., 21, 49–64,
https://doi.org/10.1038/jes.2010.15, 2011.
von der Weiden, S.-L., Drewnick, F., and Borrmann, S.: Particle Loss Calculator – a
new software tool for the assessment of the performance of aerosol inlet systems,
Atmos. Meas. Tech., 2, 479–494, https://doi.org/10.5194/amt-2-479-2009, 2009.
Weingartner, E., Burtscher, H., Hüglin, C., and Ehara, K.: Semi-continuous mass
measurement, in Aerosol Measurement: Principles, Techniques, and Applications, edited by
P. Kulkarni, P. A. Baron, and K. Willeke, 155–168, John Wiley & Sons, Inc., Hoboken, New
Jersey., 2011.
WHO: Review of evidence on health aspects of air pollution – REVIHAAP Project, available at: https://www.euro. who.int/en/health-topics/environment-and-health/air-quality/ publications/2013/review-of-evidence-on-health-aspects-of-air-pollution (last access: 5 September 2020), 2013.
Yanosky, J. D., Williams, P. L., and Macintosh, D. L.: A comparison of two
direct-reading aerosol monitors with the federal reference method for PM2.5 in indoor
air, Atmos. Environ., 36, 107–113, https://doi.org/10.1016/S1352-2310(01)00422-8, 2002.
Zhang, J., Marto, J. P., and Schwab, J. J.: Exploring the applicability and limitations
of selected optical scattering instruments for PM mass measurement, Atmos. Meas. Tech., 11,
2995–3005, https://doi.org/10.5194/amt-11-2995-2018, 2018.
Zhou, Z., Liu, Y., Yuan, J., Zuo, J., Chen, G., Xu, L., and Rameezdeen, R.: Indoor
PM2.5 concentrations in residential buildings during a severely polluted winter: A case study in
Tianjin, China, Renew. Sustain. Energy Rev., 64, 372–381, https://doi.org/10.1016/j.rser.2016.06.018, 2016.
Zhu, K., Zhang, J. J., and Lioy, P. J.: Evaluation and Comparison of Continuous Fine
Particulate Matter Monitors for Measurement of Ambient Aerosols, J. Air Waste Manage. Assoc., 57,
1499–1506, https://doi.org/10.3155/1047-3289.57.12.1499, 2007.
Zhuang, H., Chan, C. K., Fang, M., and Wexler, A. S.: Size distributions of particulate
sulfate, nitrate, and ammonium at a coastal site in Hong Kong, Atmos. Environ., 33, 843–853,
https://doi.org/10.1016/S1352-2310(98)00305-7, 1999.
Short summary
A new facility has been developed which allows for the stable and reproducible generation of ambient-like model aerosols in the laboratory. The set-up consists of multiple aerosol generators, a custom-made flow tube homogeniser, isokinetic sampling probes, and a system to control aerosol temperature and humidity. The model aerosols, which contain fresh and aged soot, inorganic salt, and dust particles, can be used for the calibration of air quality monitoring instruments.
A new facility has been developed which allows for the stable and reproducible generation of...