Articles | Volume 14, issue 2
https://doi.org/10.5194/amt-14-1267-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-1267-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Detection and quantification of CH4 plumes using the WFM-DOAS retrieval on AVIRIS-NG hyperspectral data
Jakob Borchardt
CORRESPONDING AUTHOR
Institute of Environmental Physics (IUP), University of Bremen, Bremen, Germany
Konstantin Gerilowski
Institute of Environmental Physics (IUP), University of Bremen, Bremen, Germany
Sven Krautwurst
Institute of Environmental Physics (IUP), University of Bremen, Bremen, Germany
Heinrich Bovensmann
Institute of Environmental Physics (IUP), University of Bremen, Bremen, Germany
Andrew K. Thorpe
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
David R. Thompson
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Christian Frankenberg
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Charles E. Miller
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Riley M. Duren
Institutes for Resilience, University of Arizona, Tucson, AZ, USA
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
John Philip Burrows
Institute of Environmental Physics (IUP), University of Bremen, Bremen, Germany
Data sets
ABoVE: Hyperspectral Imagery from AVIRIS-NG, Alaskan and Canadian Arctic, 2017-2018 C. E. Miller, R. O. Green, D. R. Thompson, A. K. Thorpe, M. Eastwood, I. B. Mccubbin, W. Olson-duvall, M. Bernas, C. M. Sarture, S. Nolte, L. M. Rios, M. A. Hernandez, B. D. Bue, and S. R. Lundeen https://doi.org/10.3334/ORNLDAAC/1569
Short summary
The AVIRIS-NG hyperspectral imager has been used successfully to identify and quantify anthropogenic methane sources utilizing different retrieval and inversion methods. Here, we examine the adaption and application of the WFM-DOAS algorithm to AVIRIS-NG measurements to retrieve local methane column enhancements, compare the results with other retrievals, and quantify the uncertainties resulting from the retrieval method. Additionally, we estimate emissions from five detected methane plumes.
The AVIRIS-NG hyperspectral imager has been used successfully to identify and quantify...