CIE: Spatial Distribution of Daylight – CIE Standard General Sky, Commission
Internationale de l'Eclairage, Vienna, Austria, 2003.
Conrad, B. M.: SetupSkyLOSA: A MATLAB Tool to support Acquisition of
Sky-LOSA Data, Zenodo, https://doi.org/10.5281/zenodo.3908540, 2020.
Conrad, B. M. and Johnson, M. R.: Field measurements of black carbon yields
from gas flaring, Environ. Sci. Technol., 51, 1893–1900,
https://doi.org/10.1021/acs.est.6b03690, 2017.
Conrad, B. M. and Johnson, M. R.: Mass absorption cross-section of
flare-generated black carbon: Variability, predictive model, and
implications, Carbon, 149, 760–771, https://doi.org/10.1016/j.carbon.2019.04.086,
2019.
Conrad, B. M., Thornock, J. N., and Johnson, M. R.: Beam steering effects on
remote optical measurements of pollutant emissions in heated plumes and
flares, J. Quant. Spectrosc. Ra., 254, 107191, https://doi.org/10.1016/j.jqsrt.2020.107191, 2020a.
Conrad, B. M., Thornock, J. N., and Johnson, M. R.: The effect of multiple
scattering on optical measurement of soot emissions in atmospheric plumes,
J. Quant. Spectrosc. Ra., 254, 107220,
https://doi.org/10.1016/j.jqsrt.2020.107220, 2020b.
Darula, S. and Kittler, R.: CIE general sky standard defining luminance distributions, in eSIM 2002, available at:
http://www.ibpsa.org/?page_id=291 (last access: 22 February 2021), International Building Performance Simulation Association, Montreal, Canada, 11–13 September 2002.
Elvidge, C. D., Baugh, K. E., Tuttle, B. T., Howard, A. T., Pack, D. W.,
Milesi, C., and Erwin, E. H.: A Twelve Year Record of National and Global Gas
Flaring Volumes Estimated Using Satellite Data: Final Report to the World
Bank, available at:
https://eogdata.mines.edu/interest/flare_docs/DMSP_flares_20070530_b.pdf (last access: 22 February 2021), 2007.
Elvidge, C. D., Ziskin, D., Baugh, K. E., Tuttle, B. T., Ghosh, T., Pack, D.
W., Erwin, E. H., and Zhizhin, M.: A Fifteen Year Record of Global Natural
Gas Flaring Derived from Satellite Data, Energies, 2, 595–622,
https://doi.org/10.3390/en20300595, 2009.
Elvidge, C. D., Zhizhin, M., Baugh, K., Hsu, F., and Ghosh, T.: Methods for
global survey of natural gas flaring from visible infrared imaging
radiometer suite data, Energies, 9, 14, https://doi.org/10.3390/en9010014, 2016.
Gvakharia, A., Kort, E. A., Brandt, A. R., Peischl, J., Ryerson, T. B.,
Schwarz, J. P., Smith, M. L., and Sweeney, C.: Methane
, black carbon, and
ethane emissions from natural gas flares in the Bakken Shale, North Dakota,
Environ. Sci. Technol., 51, 5317–5325, https://doi.org/10.1021/acs.est.6b05183,
2017.
Jacobson, M. Z.: Strong radiative heating due to the mixing state of black
carbon in atmospheric aerosols, Nature, 409, 695–697,
https://doi.org/10.1038/35055518, 2001.
Johnson, M. R., Wilson, D. J., and Kostiuk, L. W.: A fuel stripping mechanism
for wake-stabilized jet diffusion flames in crossflow,
Combust. Sci. Technol., 169, 155–174, https://doi.org/10.1080/00102200108907844, 2001.
Johnson, M. R., Devillers, R. W., Yang, C., and Thomson, K. A.: Sky-Scattered
solar radiation based plume transmissivity measurement to quantify soot
emissions from flares, Environ. Sci. Technol., 44, 8196–8202,
https://doi.org/10.1021/es1024838, 2010.
Johnson, M. R., Devillers, R. W., and Thomson, K. A.: Quantitative field
measurement of soot emission from a large gas flare using sky-LOSA, Environ.
Sci. Technol., 45, 345–350, https://doi.org/10.1021/es102230y, 2011.
Johnson, M. R., Devillers, R. W., and Thomson, K. A.: A generalized sky-LOSA
method to quantify soot/black carbon emission rates in atmospheric plumes of
gas flares, Aerosol Sci. Tech., 47, 1017–1029,
https://doi.org/10.1080/02786826.2013.809401, 2013.
Kasten, F. and Young, A. T.: Revised optical air mass tables and
approximation formula, Appl. Optics, 28, 4735–4738, https://doi.org/10.1364/AO.28.004735, 1989.
Kazemimanesh, M., Dastanpour, R., Baldelli, A., Moallemi, A., Thomson, K.
A., Jefferson, M. A., Johnson, M. R., Rogak, S. N., and Olfert, J. S.: Size,
effective density, morphology, and nano-structure of soot particles
generated from buoyant turbulent diffusion flames, J. Aerosol Sci., 132,
22–31, https://doi.org/10.1016/j.jaerosci.2019.03.005, 2019.
Köylü, Ü. Ö. and Faeth, G. M.: Structure of overfire soot in
buoyant turbulent diffusion flames at long residence times, Combust. Flame,
89, 140–156, https://doi.org/10.1016/0010-2180(92)90024-J, 1992.
McDaniel, M.: Flare efficiency study, United States Environmental Protection
Agency, Research Triangle Park, North Carolina, USA, available at:
http://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P1003QGZ.txt (last access: 22 February 2021), 1983.
McEwen, J. D. N. and Johnson, M. R.: Black carbon particulate matter
emission factors for buoyancy-driven associated gas flares,
J. Air Waste Manage., 62, 307–321, https://doi.org/10.1080/10473289.2011.650040, 2012.
Nakayama, M. K.: Asymptotically Valid Confidence Intervals for Quantiles and
Values-at-Risk When Applying Latin Hypercube Sampling, available at:
http://www.iariajournals.org/systems_and_measurements/tocv4n12.html (last access: 22 February 2021),
Int. J. Adv. Syst. Meas., 4, 86–94, 2011.
Navvab, M., Karayel, M., Ne'eman, E., and Selkowitz, S.: Analysis of
atmospheric turbidity for daylight calculations, Energ. Buildings, 6,
293–303, https://doi.org/10.1016/0378-7788(84)90061-6, 1984.
Petzold, A., Ogren, J. A., Fiebig, M., Laj, P., Li, S.-M., Baltensperger, U., Holzer-Popp, T., Kinne, S., Pappalardo, G., Sugimoto, N., Wehrli, C., Wiedensohler, A., and Zhang, X.-Y.: Recommendations for reporting “black carbon” measurements, Atmos. Chem. Phys., 13, 8365–8379, https://doi.org/10.5194/acp-13-8365-2013, 2013.
Pohl, J. H., Tichenor, B. A., Lee, J., and Payne, R.: Combustion Efficiency
of Flares, Combust. Sci. Technol., 50, 217–231,
https://doi.org/10.1080/00102208608923934, 1986.
Popovicheva, O. B., Evangeliou, N., Eleftheriadis, K., Kalogridis, A. C.,
Sitnikov, N., Eckhardt, S., and Stohl, A.: Black Carbon Sources Constrained
by Observations in the Russian High Arctic, Environ. Sci. Technol., 51,
3871–3879, https://doi.org/10.1021/acs.est.6b05832, 2017.
Reda, I. and Andreas, A.: Solar Position Algorithm for Solar Radiation
Applications (Revised), Golden, Colorado, USA, 2008.
Sato, M., Hansen, J., Koch, D., Lacis, A., Ruedy, R., Dubovik, O., Holben,
B., Chin, M., and Novakov, T.: Global atmospheric black carbon inferred from
AERONET, P. Natl. Acad. Sci. USA, 100, 6319–6324,
https://doi.org/10.1073/pnas.0731897100, 2003.
Schuster, G. L.: Inferring the Specific Absorption and Concentration of
Black Carbon From Aeronet Aerosol Retrievals, PhD thesis, Pennsylvania State
University, University Park, PA, USA, 85 pp., 2004.
Schwarz, J. P., Holloway, J. S., Katich, J. M., McKeen, S., Kort, E. A.,
Smith, M. L., Ryerson, T. B., Sweeney, C., and Peischl, J.: Black carbon
emissions from the Bakken oil and gas development region,
Environ. Sci. Tech. Let., 2, 281–285, https://doi.org/10.1021/acs.estlett.5b00225, 2015.
Sorensen, C. M.: Light Scattering by Fractal Aggregates: A Review, Aerosol Sci. Tech., 35, 648–687, https://doi.org/10.1080/02786820117868, 2001.
Stohl, A., Berg, T., Burkhart, J. F., Fjǽraa, A. M., Forster, C., Herber, A., Hov, Ø., Lunder, C., McMillan, W. W., Oltmans, S., Shiobara, M., Simpson, D., Solberg, S., Stebel, K., Ström, J., Tørseth, K., Treffeisen, R., Virkkunen, K., and Yttri, K. E.: Arctic smoke – record high air pollution levels in the European Arctic due to agricultural fires in Eastern Europe in spring 2006, Atmos. Chem. Phys., 7, 511–534, https://doi.org/10.5194/acp-7-511-2007, 2007.
Trivanovic, U., Sipkens, T. A., Kazemimanesh, M., Baldelli, A., Jefferson,
A. M., Conrad, B. M., Johnson, M. R., Corbin, J. C., Olfert, J. S., and
Rogak, S. N.: Morphology and size of soot from gas flares as a function of
fuel and water addition, Fuel, 279, 118478, https://doi.org/10.1016/j.fuel.2020.118478, 2020.
U.S. EPA: AP 42 – Compilation of Air Pollutant Emission Factors, Volume I,
Sect. 13.5, Industrial Flares, Research Triangle Park, North Carolina, USA, available at:
https://www3.epa.gov/ttn/chief/ap42/ch13/index.html (last access: 22 February 2021), 2018.
United Nations Economic Commission for Europe: 1999 Protocol to Abate
Acidification, Eutrophication and Ground-level ozone to the Convention on
Long-range Transboundary Air Pollution, ECE/EB. AIR/114, available at: https://unece.org/environment-policyair/protocol-abate-acidification-eutrophication-and-ground-level-ozone (last access: 22 February 2021), 2012.
Watanabe, T., Takamatsu, T., and Nakajima, T. Y.: Evaluation of Variation in
Surface Solar Irradiance and Clustering o
f Observation Stations in Japan,
J. Appl. Meteorol. Clim., 55, 2165–2180, https://doi.org/10.1175/JAMC-D-15-0227.1,
2016.
Weyant, C. L., Shepson, P. B., Subramanian, R., Cambaliza, M. O. L. L.,
Heimburger, A., Mccabe, D., Baum, E., Stirm, B. H., and Bond, T. C.: Black
carbon emissions from associated natural gas flaring, Environ. Sci.
Technol., 50, 2075–2081, https://doi.org/10.1021/acs.est.5b04712, 2016.
Wieneke, B.: PIV uncertainty quantification from correlation statistics,
Meas. Sci. Technol., 26, 074002, https://doi.org/10.1088/0957-0233/26/7/074002, 2015.
Wong, I. L.: A review of daylighting design and implementation in buildings,
Renew. Sust. Energ. Rev., 74, 959–968, https://doi.org/10.1016/j.rser.2017.03.061,
2017.