Articles | Volume 14, issue 2
Atmos. Meas. Tech., 14, 1743–1759, 2021
https://doi.org/10.5194/amt-14-1743-2021
Atmos. Meas. Tech., 14, 1743–1759, 2021
https://doi.org/10.5194/amt-14-1743-2021

Research article 03 Mar 2021

Research article | 03 Mar 2021

A robust low-level cloud and clutter discrimination method for ground-based millimeter-wavelength cloud radar

Xiaoyu Hu et al.

Related authors

Technical note: Uncertainties in eddy covariance CO2 fluxes in a semiarid sagebrush ecosystem caused by gap-filling approaches
Jingyu Yao, Zhongming Gao, Jianping Huang, Heping Liu, and Guoyin Wang
Atmos. Chem. Phys., 21, 15589–15603, https://doi.org/10.5194/acp-21-15589-2021,https://doi.org/10.5194/acp-21-15589-2021, 2021
Short summary
Evaluation of the CMIP6 marine subtropical stratocumulus cloud albedo and its controlling factors
Bida Jian, Jiming Li, Guoyin Wang, Yuxin Zhao, Yarong Li, Jing Wang, Min Zhang, and Jianping Huang
Atmos. Chem. Phys., 21, 9809–9828, https://doi.org/10.5194/acp-21-9809-2021,https://doi.org/10.5194/acp-21-9809-2021, 2021
Short summary
Modeling dust sources, transport, and radiative effects at different altitudes over the Tibetan Plateau
Zhiyuan Hu, Jianping Huang, Chun Zhao, Qinjian Jin, Yuanyuan Ma, and Ben Yang
Atmos. Chem. Phys., 20, 1507–1529, https://doi.org/10.5194/acp-20-1507-2020,https://doi.org/10.5194/acp-20-1507-2020, 2020
Short summary
Trans-Pacific transport and evolution of aerosols: spatiotemporal characteristics and source contributions
Zhiyuan Hu, Jianping Huang, Chun Zhao, Yuanyuan Ma, Qinjian Jin, Yun Qian, L. Ruby Leung, Jianrong Bi, and Jianmin Ma
Atmos. Chem. Phys., 19, 12709–12730, https://doi.org/10.5194/acp-19-12709-2019,https://doi.org/10.5194/acp-19-12709-2019, 2019
Short summary
Impact of anthropogenic activities on global land oxygen flux
Xiaoyue Liu, Jianping Huang, Jiping Huang, Changyu Li, and Lei Ding
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2019-36,https://doi.org/10.5194/essd-2019-36, 2019
Revised manuscript not accepted
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Triple frequency radar retrieval of microphysical properties of snow
Kamil Mroz, Alessandro Battaglia, Cuong Nguyen, Andrew Heymsfield, Alain Protat, and Mengistu Wolde
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-227,https://doi.org/10.5194/amt-2021-227, 2021
Revised manuscript accepted for AMT
Short summary
Physical characteristics of frozen hydrometeors inferred with parameter estimation
Alan J. Geer
Atmos. Meas. Tech., 14, 5369–5395, https://doi.org/10.5194/amt-14-5369-2021,https://doi.org/10.5194/amt-14-5369-2021, 2021
Short summary
Cloud height measurement by a network of all-sky imagers
Niklas Benedikt Blum, Bijan Nouri, Stefan Wilbert, Thomas Schmidt, Ontje Lünsdorf, Jonas Stührenberg, Detlev Heinemann, Andreas Kazantzidis, and Robert Pitz-Paal
Atmos. Meas. Tech., 14, 5199–5224, https://doi.org/10.5194/amt-14-5199-2021,https://doi.org/10.5194/amt-14-5199-2021, 2021
Short summary
Increasing the spatial resolution of cloud property retrievals from Meteosat SEVIRI by use of its high-resolution visible channel: implementation and examples
Hartwig Deneke, Carola Barrientos-Velasco, Sebastian Bley, Anja Hünerbein, Stephan Lenk, Andreas Macke, Jan Fokke Meirink, Marion Schroedter-Homscheidt, Fabian Senf, Ping Wang, Frank Werner, and Jonas Witthuhn
Atmos. Meas. Tech., 14, 5107–5126, https://doi.org/10.5194/amt-14-5107-2021,https://doi.org/10.5194/amt-14-5107-2021, 2021
Short summary
Why we need radar, lidar, and solar radiance observations to constrain ice cloud microphysics
Florian Ewald, Silke Groß, Martin Wirth, Julien Delanoë, Stuart Fox, and Bernhard Mayer
Atmos. Meas. Tech., 14, 5029–5047, https://doi.org/10.5194/amt-14-5029-2021,https://doi.org/10.5194/amt-14-5029-2021, 2021
Short summary

Cited articles

Abrol, D. P.: Diversity of pollinating insects visiting litchi flowers (Litchi chinensis Sonn.) and path analysis of environmental factors influencing foraging behaviour of four honeybee species, J. Apicult. Res., 45, 180–187, https://doi.org/10.1080/00218839.2006.11101345, 2015. 
Arulraj, M. and Barros, A. P.: Shallow Precipitation Detection and Classification Using Multifrequency Radar Observations and Model Simulations, J. Atmos. Ocean. Tech., 34, 1963–1983, https://doi.org/10.1175/jtech-d-17-0060.1, 2017. 
Bala, G., Caldeira, K., Nemani, R., Cao, L., Ban-Weiss, G., and Shin, H.-J.: Albedo enhancement of marine clouds to counteract global warming: impacts on the hydrological cycle, Clim. Dynam., 37, 915–931, https://doi.org/10.1007/s00382-010-0868-1, 2010. 
Baldini, L. and Gorgucci, E.: Identification of the Melting Layer through Dual-Polarization Radar Measurements at Vertical Incidence, J. Atmos. Ocean. Tech., 23, 829–839, https://doi.org/10.1175/jtech1884.1, 2006. 
Download
Short summary
Cloud radars are powerful instruments that can probe detailed cloud structures. However, radar echoes in the lower atmosphere are always contaminated by clutter. We proposed a multi-dimensional probability distribution function that can effectively discriminate low-level clouds from clutter by considering their different features in several variables. We applied this method to the radar observations at the SACOL site and found the results have good agreement with lidar detection.