Articles | Volume 14, issue 3
https://doi.org/10.5194/amt-14-1993-2021
https://doi.org/10.5194/amt-14-1993-2021
Research article
 | 
11 Mar 2021
Research article |  | 11 Mar 2021

Intercomparison of arctic XH2O observations from three ground-based Fourier transform infrared networks and application for satellite validation

Qiansi Tu, Frank Hase, Thomas Blumenstock, Matthias Schneider, Andreas Schneider, Rigel Kivi, Pauli Heikkinen, Benjamin Ertl, Christopher Diekmann, Farahnaz Khosrawi, Michael Sommer, Tobias Borsdorff, and Uwe Raffalski

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Qiansi Tu on behalf of the Authors (24 Dec 2020)  Author's response   Manuscript 
ED: Publish as is (08 Jan 2021) by Cheng Liu
AR by Qiansi Tu on behalf of the Authors (08 Jan 2021)
Download
Short summary
We compare column-averaged dry-air mole fractions of water vapor (XH2O) retrievals from the COllaborative Carbon Column Observing Network (COCCON) with two co-located ground-based spectrometers as references at two boreal sites. Our study supports the assumption that COCCON also delivers a well-characterized XH2O data product. This is the first published study applying COCCON for MUSICA IASI and TROPOMI validation.