Articles | Volume 14, issue 4
https://doi.org/10.5194/amt-14-2941-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-2941-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Two-dimensional monitoring of air pollution in Madrid using a Multi-AXis Differential Optical Absorption Spectroscopy two-dimensional (MAXDOAS-2D) instrument
David Garcia-Nieto
Department of Atmospheric Chemistry and Climate, Institute of
Physical Chemistry Rocasolano, CSIC, Madrid 28006, Spain
Universidad Politécnica de Madrid, UPM, 28006 Madrid, Spain
Nuria Benavent
Department of Atmospheric Chemistry and Climate, Institute of
Physical Chemistry Rocasolano, CSIC, Madrid 28006, Spain
Universidad Politécnica de Madrid, UPM, 28006 Madrid, Spain
Rafael Borge
Universidad Politécnica de Madrid, UPM, 28006 Madrid, Spain
Department of Atmospheric Chemistry and Climate, Institute of
Physical Chemistry Rocasolano, CSIC, Madrid 28006, Spain
Related authors
No articles found.
Juan A. Añel, Juan-Carlos Antuña-Marrero, Antonio Cid Samamed, Celia Pérez-Souto, Laura de la Torre, Maria Antonia Valente, Yuri Brugnara, Alfonso Saiz-López, and Luis Gimeno
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-366, https://doi.org/10.5194/essd-2024-366, 2024
Preprint under review for ESSD
Short summary
Short summary
Ozone, discovered in 1837, was first measured in 1847 using paper strips that reacted with ozone, providing an indication of its concentration based on color changes. Here we present the data, covering over sixty years of daily observations, conducted along the East Atlantic coast, spanning from the tropics to the northern extratropics.
Katrine A. Gorham, Sam Abernethy, Tyler R. Jones, Peter Hess, Natalie M. Mahowald, Daphne Meidan, Matthew S. Johnson, Maarten M. J. W. van Herpen, Yangyang Xu, Alfonso Saiz-Lopez, Thomas Röckmann, Chloe A. Brashear, Erika Reinhardt, and David Mann
Atmos. Chem. Phys., 24, 5659–5670, https://doi.org/10.5194/acp-24-5659-2024, https://doi.org/10.5194/acp-24-5659-2024, 2024
Short summary
Short summary
Rapid reduction in atmospheric methane is needed to slow the rate of global warming. Reducing anthropogenic methane emissions is a top priority. However, atmospheric methane is also impacted by rising natural emissions and changing sinks. Studies of possible atmospheric methane removal approaches, such as iron salt aerosols to increase the chlorine radical sink, benefit from a roadmapped approach to understand if there may be viable and socially acceptable ways to decrease future risk.
Heesung Chong, Gonzalo González Abad, Caroline R. Nowlan, Christopher Chan Miller, Alfonso Saiz-Lopez, Rafael P. Fernandez, Hyeong-Ahn Kwon, Zolal Ayazpour, Huiqun Wang, Amir H. Souri, Xiong Liu, Kelly Chance, Ewan O'Sullivan, Jhoon Kim, Ja-Ho Koo, William R. Simpson, François Hendrick, Richard Querel, Glen Jaross, Colin Seftor, and Raid M. Suleiman
Atmos. Meas. Tech., 17, 2873–2916, https://doi.org/10.5194/amt-17-2873-2024, https://doi.org/10.5194/amt-17-2873-2024, 2024
Short summary
Short summary
We present a new bromine monoxide (BrO) product derived using radiances measured from OMPS-NM on board the Suomi-NPP satellite. This product provides nearly a decade of global stratospheric and tropospheric column retrievals, a feature that is currently rare in publicly accessible datasets. Both stratospheric and tropospheric columns from OMPS-NM demonstrate robust performance, exhibiting good agreement with ground-based observations collected at three stations (Lauder, Utqiagvik, and Harestua).
David de la Paz, Rafael Borge, Juan Manuel de Andrés, Luis Tovar, Golam Sarwar, and Sergey L. Napelenok
Atmos. Chem. Phys., 24, 4949–4972, https://doi.org/10.5194/acp-24-4949-2024, https://doi.org/10.5194/acp-24-4949-2024, 2024
Short summary
Short summary
This source apportionment modeling study shows that around 70 % of ground-level O3 in Madrid (Spain) is transported from other regions. Nonetheless, emissions from local sources, mainly road traffic, play a significant role, especially under atmospheric stagnation. Local measures during those conditions may be able to reduce O3 peaks by up to 30 % and, thus, lessen impacts from high-O3 episodes in the Madrid metropolitan area.
Cyril Caram, Sophie Szopa, Anne Cozic, Slimane Bekki, Carlos A. Cuevas, and Alfonso Saiz-Lopez
Geosci. Model Dev., 16, 4041–4062, https://doi.org/10.5194/gmd-16-4041-2023, https://doi.org/10.5194/gmd-16-4041-2023, 2023
Short summary
Short summary
We studied the role of halogenated compounds (containing chlorine, bromine and iodine), emitted by natural processes (mainly above the oceans), in the chemistry of the lower layers of the atmosphere. We introduced this relatively new chemistry in a three-dimensional climate–chemistry model and looked at how this chemistry will disrupt the ozone. We showed that the concentration of ozone decreases by 22 % worldwide and that of the atmospheric detergent, OH, by 8 %.
Manon Rocco, Erin Dunne, Alexia Saint-Macary, Maija Peltola, Theresa Barthelmeß, Neill Barr, Karl Safi, Andrew Marriner, Stacy Deppeler, James Harnwell, Anja Engel, Aurélie Colomb, Alfonso Saiz-Lopez, Mike Harvey, Cliff S. Law, and Karine Sellegri
EGUsphere, https://doi.org/10.5194/egusphere-2023-516, https://doi.org/10.5194/egusphere-2023-516, 2023
Preprint archived
Short summary
Short summary
During the Sea2cloud campaign in the Southern Pacific Ocean, we measured air-sea emissions from phytopankton of two key atmospheric compounds: DMS and MeSH. These compounds are well-known to play a great role in atmospheric chemistry and climate. We see in this paper that these compounds are most emited by the nanophytoplankton population. We provide here parameters for climate models to predict future trends of the emissions of these compounds and their roles and impacts on the global warming.
Ka Lok Chan, Pieter Valks, Klaus-Peter Heue, Ronny Lutz, Pascal Hedelt, Diego Loyola, Gaia Pinardi, Michel Van Roozendael, François Hendrick, Thomas Wagner, Vinod Kumar, Alkis Bais, Ankie Piters, Hitoshi Irie, Hisahiro Takashima, Yugo Kanaya, Yongjoo Choi, Kihong Park, Jihyo Chong, Alexander Cede, Udo Frieß, Andreas Richter, Jianzhong Ma, Nuria Benavent, Robert Holla, Oleg Postylyakov, Claudia Rivera Cárdenas, and Mark Wenig
Earth Syst. Sci. Data, 15, 1831–1870, https://doi.org/10.5194/essd-15-1831-2023, https://doi.org/10.5194/essd-15-1831-2023, 2023
Short summary
Short summary
This paper presents the theoretical basis as well as verification and validation of the Global Ozone Monitoring Experiment-2 (GOME-2) daily and monthly level-3 products.
François Burgay, Rafael Pedro Fernández, Delia Segato, Clara Turetta, Christopher S. Blaszczak-Boxe, Rachael H. Rhodes, Claudio Scarchilli, Virginia Ciardini, Carlo Barbante, Alfonso Saiz-Lopez, and Andrea Spolaor
The Cryosphere, 17, 391–405, https://doi.org/10.5194/tc-17-391-2023, https://doi.org/10.5194/tc-17-391-2023, 2023
Short summary
Short summary
The paper presents the first ice-core record of bromine (Br) in the Antarctic plateau. By the observation of the ice core and the application of atmospheric chemical models, we investigate the behaviour of bromine after its deposition into the snowpack, with interest in the effect of UV radiation change connected to the formation of the ozone hole, the role of volcanic deposition, and the possible use of Br to reconstruct past sea ice changes from ice core collect in the inner Antarctic plateau.
Markus Jesswein, Rafael P. Fernandez, Lucas Berná, Alfonso Saiz-Lopez, Jens-Uwe Grooß, Ryan Hossaini, Eric C. Apel, Rebecca S. Hornbrook, Elliot L. Atlas, Donald R. Blake, Stephen Montzka, Timo Keber, Tanja Schuck, Thomas Wagenhäuser, and Andreas Engel
Atmos. Chem. Phys., 22, 15049–15070, https://doi.org/10.5194/acp-22-15049-2022, https://doi.org/10.5194/acp-22-15049-2022, 2022
Short summary
Short summary
This study presents the global and seasonal distribution of the two major brominated short-lived substances CH2Br2 and CHBr3 in the upper troposphere and lower stratosphere based on observations from several aircraft campaigns. They show similar seasonality for both hemispheres, except in the respective hemispheric autumn lower stratosphere. A comparison with the TOMCAT and CAM-Chem models shows good agreement in the annual mean but larger differences in the seasonal consideration.
Hisahiro Takashima, Yugo Kanaya, Saki Kato, Martina M. Friedrich, Michel Van Roozendael, Fumikazu Taketani, Takuma Miyakawa, Yuichi Komazaki, Carlos A. Cuevas, Alfonso Saiz-Lopez, and Takashi Sekiya
Atmos. Chem. Phys., 22, 4005–4018, https://doi.org/10.5194/acp-22-4005-2022, https://doi.org/10.5194/acp-22-4005-2022, 2022
Short summary
Short summary
We have undertaken atmospheric iodine monoxide (IO) observations in the global marine boundary layer with a wide latitudinal coverage and sea surface temperature (SST) range. We conclude that atmospheric iodine is abundant over the Western Pacific warm pool, appearing as an iodine fountain, where ozone (O3) minima occur. Our study also found negative correlations between IO and O3 concentrations over IO maxima, which requires reconsideration of the initiation process of halogen activation.
Zhiyuan Gao, Nicolas-Xavier Geilfus, Alfonso Saiz-Lopez, and Feiyue Wang
Atmos. Chem. Phys., 22, 1811–1824, https://doi.org/10.5194/acp-22-1811-2022, https://doi.org/10.5194/acp-22-1811-2022, 2022
Short summary
Short summary
Every spring in the Arctic, a series of photochemical events occur over the ice-covered ocean, known as bromine explosion events, ozone depletion events, and mercury depletion events. Here we report the re-creation of these events at an outdoor sea ice facility in Winnipeg, Canada, far away from the Arctic. The success provides a new platform with new opportunities to uncover fundamental mechanisms of these Arctic springtime phenomena and how they may change in a changing climate.
Arseniy Karagodin-Doyennel, Eugene Rozanov, Timofei Sukhodolov, Tatiana Egorova, Alfonso Saiz-Lopez, Carlos A. Cuevas, Rafael P. Fernandez, Tomás Sherwen, Rainer Volkamer, Theodore K. Koenig, Tanguy Giroud, and Thomas Peter
Geosci. Model Dev., 14, 6623–6645, https://doi.org/10.5194/gmd-14-6623-2021, https://doi.org/10.5194/gmd-14-6623-2021, 2021
Short summary
Short summary
Here, we present the iodine chemistry module in the SOCOL-AERv2 model. The obtained iodine distribution demonstrated a good agreement when validated against other simulations and available observations. We also estimated the iodine influence on ozone in the case of present-day iodine emissions, the sensitivity of ozone to doubled iodine emissions, and when considering only organic or inorganic iodine sources. The new model can be used as a tool for further studies of iodine effects on ozone.
Anoop S. Mahajan, Mriganka S. Biswas, Steffen Beirle, Thomas Wagner, Anja Schönhardt, Nuria Benavent, and Alfonso Saiz-Lopez
Atmos. Chem. Phys., 21, 11829–11842, https://doi.org/10.5194/acp-21-11829-2021, https://doi.org/10.5194/acp-21-11829-2021, 2021
Short summary
Short summary
Iodine plays a vital role in oxidation chemistry over Antarctica, with past observations showing highly elevated levels of iodine oxide (IO) leading to severe depletion of boundary layer ozone. We present IO observations over three summers (2015–2017) at the Indian Antarctic bases of Bharati and Maitri. IO was observed during all campaigns with mixing ratios below 2 pptv, which is lower than the peak levels observed in West Antarctica, showing the differences in regional chemistry and emissions.
Anoop S. Mahajan, Qinyi Li, Swaleha Inamdar, Kirpa Ram, Alba Badia, and Alfonso Saiz-Lopez
Atmos. Chem. Phys., 21, 8437–8454, https://doi.org/10.5194/acp-21-8437-2021, https://doi.org/10.5194/acp-21-8437-2021, 2021
Short summary
Short summary
Using a regional model, we show that iodine-catalysed reactions cause large regional changes in the chemical composition in the northern Indian Ocean, with peak changes of up to 25 % in O3, 50 % in nitrogen oxides (NO and NO2), 15 % in hydroxyl radicals (OH), 25 % in hydroperoxyl radicals (HO2), and up to a 50 % change in the nitrate radical (NO3). These results show the importance of including iodine chemistry in modelling the atmosphere in this region.
Swaleha Inamdar, Liselotte Tinel, Rosie Chance, Lucy J. Carpenter, Prabhakaran Sabu, Racheal Chacko, Sarat C. Tripathy, Anvita U. Kerkar, Alok K. Sinha, Parli Venkateswaran Bhaskar, Amit Sarkar, Rajdeep Roy, Tomás Sherwen, Carlos Cuevas, Alfonso Saiz-Lopez, Kirpa Ram, and Anoop S. Mahajan
Atmos. Chem. Phys., 20, 12093–12114, https://doi.org/10.5194/acp-20-12093-2020, https://doi.org/10.5194/acp-20-12093-2020, 2020
Short summary
Short summary
Iodine chemistry is generating a lot of interest because of its impacts on the oxidising capacity of the marine boundary and depletion of ozone. However, one of the challenges has been predicting the right levels of iodine in the models, which depend on parameterisations for emissions from the sea surface. This paper discusses the different parameterisations available and compares them with observations, showing that our current knowledge is still insufficient, especially on a regional scale.
Yang Wang, Arnoud Apituley, Alkiviadis Bais, Steffen Beirle, Nuria Benavent, Alexander Borovski, Ilya Bruchkouski, Ka Lok Chan, Sebastian Donner, Theano Drosoglou, Henning Finkenzeller, Martina M. Friedrich, Udo Frieß, David Garcia-Nieto, Laura Gómez-Martín, François Hendrick, Andreas Hilboll, Junli Jin, Paul Johnston, Theodore K. Koenig, Karin Kreher, Vinod Kumar, Aleksandra Kyuberis, Johannes Lampel, Cheng Liu, Haoran Liu, Jianzhong Ma, Oleg L. Polyansky, Oleg Postylyakov, Richard Querel, Alfonso Saiz-Lopez, Stefan Schmitt, Xin Tian, Jan-Lukas Tirpitz, Michel Van Roozendael, Rainer Volkamer, Zhuoru Wang, Pinhua Xie, Chengzhi Xing, Jin Xu, Margarita Yela, Chengxin Zhang, and Thomas Wagner
Atmos. Meas. Tech., 13, 5087–5116, https://doi.org/10.5194/amt-13-5087-2020, https://doi.org/10.5194/amt-13-5087-2020, 2020
Thomas R. Lewis, Juan Carlos Gómez Martín, Mark A. Blitz, Carlos A. Cuevas, John M. C. Plane, and Alfonso Saiz-Lopez
Atmos. Chem. Phys., 20, 10865–10887, https://doi.org/10.5194/acp-20-10865-2020, https://doi.org/10.5194/acp-20-10865-2020, 2020
Short summary
Short summary
Iodine-bearing gasses emitted from the sea surface are chemically processed in the atmosphere, leading to iodine accumulation in aerosol and transport to continental ecosystems. Such processing involves light-induced break-up of large, particle-forming iodine oxides into smaller, ozone-depleting molecules. We combine experiments and theory to report the photolysis efficiency of iodine oxides required to assess the impact of iodine on ozone depletion and particle formation.
Javier Alejandro Barrera, Rafael Pedro Fernandez, Fernando Iglesias-Suarez, Carlos Alberto Cuevas, Jean-Francois Lamarque, and Alfonso Saiz-Lopez
Atmos. Chem. Phys., 20, 8083–8102, https://doi.org/10.5194/acp-20-8083-2020, https://doi.org/10.5194/acp-20-8083-2020, 2020
Short summary
Short summary
The inclusion of biogenic very short-lived bromocarbons (VSLBr) in the CAM-chem model improves the model–satellite agreement of the total ozone columns at mid-latitudes and drives a persistent hemispheric asymmetry in lowermost stratospheric ozone loss. The seasonal VSLBr impact on mid-latitude lowermost stratospheric ozone is influenced by the heterogeneous reactivation processes of inorganic chlorine on ice crystals, with a clear increase in ozone destruction during spring and winter.
Karin Kreher, Michel Van Roozendael, Francois Hendrick, Arnoud Apituley, Ermioni Dimitropoulou, Udo Frieß, Andreas Richter, Thomas Wagner, Johannes Lampel, Nader Abuhassan, Li Ang, Monica Anguas, Alkis Bais, Nuria Benavent, Tim Bösch, Kristof Bognar, Alexander Borovski, Ilya Bruchkouski, Alexander Cede, Ka Lok Chan, Sebastian Donner, Theano Drosoglou, Caroline Fayt, Henning Finkenzeller, David Garcia-Nieto, Clio Gielen, Laura Gómez-Martín, Nan Hao, Bas Henzing, Jay R. Herman, Christian Hermans, Syedul Hoque, Hitoshi Irie, Junli Jin, Paul Johnston, Junaid Khayyam Butt, Fahim Khokhar, Theodore K. Koenig, Jonas Kuhn, Vinod Kumar, Cheng Liu, Jianzhong Ma, Alexis Merlaud, Abhishek K. Mishra, Moritz Müller, Monica Navarro-Comas, Mareike Ostendorf, Andrea Pazmino, Enno Peters, Gaia Pinardi, Manuel Pinharanda, Ankie Piters, Ulrich Platt, Oleg Postylyakov, Cristina Prados-Roman, Olga Puentedura, Richard Querel, Alfonso Saiz-Lopez, Anja Schönhardt, Stefan F. Schreier, André Seyler, Vinayak Sinha, Elena Spinei, Kimberly Strong, Frederik Tack, Xin Tian, Martin Tiefengraber, Jan-Lukas Tirpitz, Jeroen van Gent, Rainer Volkamer, Mihalis Vrekoussis, Shanshan Wang, Zhuoru Wang, Mark Wenig, Folkard Wittrock, Pinhua H. Xie, Jin Xu, Margarita Yela, Chengxin Zhang, and Xiaoyi Zhao
Atmos. Meas. Tech., 13, 2169–2208, https://doi.org/10.5194/amt-13-2169-2020, https://doi.org/10.5194/amt-13-2169-2020, 2020
Short summary
Short summary
In September 2016, 36 spectrometers from 24 institutes measured a number of key atmospheric pollutants during an instrument intercomparison campaign (CINDI-2) at Cabauw, the Netherlands. Here we report on the outcome of this intercomparison exercise. The three major goals were to characterise the differences between the participating instruments, to define a robust methodology for performance assessment, and to contribute to the harmonisation of the measurement settings and retrieval methods.
Jian Zhu, Shanshan Wang, Hongli Wang, Shengao Jing, Shengrong Lou, Alfonso Saiz-Lopez, and Bin Zhou
Atmos. Chem. Phys., 20, 1217–1232, https://doi.org/10.5194/acp-20-1217-2020, https://doi.org/10.5194/acp-20-1217-2020, 2020
Short summary
Short summary
To investigate the summer ozone pollution, observationally constrained modelling was carried out to study atmospheric oxidation capacity (AOC), OH reactivity, OH chain length, and HOx budget for three different ozone concentration levels in Shanghai, China. It shows that AOC, dominated by reactions involving OH radical during the daytime, has a positive correlation with ozone levels. Some key VOCs species are very important for the OH reactivity and also the ozone formation potential.
Niccolò Maffezzoli, Paul Vallelonga, Ross Edwards, Alfonso Saiz-Lopez, Clara Turetta, Helle Astrid Kjær, Carlo Barbante, Bo Vinther, and Andrea Spolaor
Clim. Past, 15, 2031–2051, https://doi.org/10.5194/cp-15-2031-2019, https://doi.org/10.5194/cp-15-2031-2019, 2019
Short summary
Short summary
This study provides the first ice-core-based history of sea ice in the North Atlantic Ocean, reaching 120 000 years back in time. This record was obtained from bromine and sodium measurements in the RECAP ice core, drilled in east Greenland. We found that, during the last deglaciation, sea ice started to melt ~ 17 500 years ago. Over the 120 000 years of the last glacial cycle, sea ice extent was maximal during MIS2, while minimum sea ice extent exists for the Holocene.
Juan Pablo Corella, Niccolo Maffezzoli, Carlos Alberto Cuevas, Paul Vallelonga, Andrea Spolaor, Giulio Cozzi, Juliane Müller, Bo Vinther, Carlo Barbante, Helle Astrid Kjær, Ross Edwards, and Alfonso Saiz-Lopez
Clim. Past, 15, 2019–2030, https://doi.org/10.5194/cp-15-2019-2019, https://doi.org/10.5194/cp-15-2019-2019, 2019
Short summary
Short summary
This study provides the first reconstruction of atmospheric iodine levels in the Arctic during the last 11 700 years from an ice core record in coastal Greenland. Dramatic shifts in iodine level variability coincide with abrupt climatic transitions in the North Atlantic. Since atmospheric iodine levels have significant environmental and climatic implications, this study may serve as a past analog to predict future changes in Arctic climate in response to global warming.
Qinyi Li, Rafael Borge, Golam Sarwar, David de la Paz, Brett Gantt, Jessica Domingo, Carlos A. Cuevas, and Alfonso Saiz-Lopez
Atmos. Chem. Phys., 19, 15321–15337, https://doi.org/10.5194/acp-19-15321-2019, https://doi.org/10.5194/acp-19-15321-2019, 2019
Short summary
Short summary
The abundance and distribution of reactive halogen species and their impact on air quality in Europe are poorly understood. We adopt a state-of-the-art regional model (CMAQ) to evaluate such effects, and the results demonstrate the significant influence of halogen chemistry on the capacity of atmospheric oxidation and the formation of air pollutants in Europe. Our study highlights the necessity of including halogen chemistry in the formulation of air pollution control policy.
Miguel Escudero, Arjo Segers, Richard Kranenburg, Xavier Querol, Andrés Alastuey, Rafael Borge, David de la Paz, Gotzon Gangoiti, and Martijn Schaap
Atmos. Chem. Phys., 19, 14211–14232, https://doi.org/10.5194/acp-19-14211-2019, https://doi.org/10.5194/acp-19-14211-2019, 2019
Short summary
Short summary
In this work we optimise LOTOS-EUROS CTM for simulating tropospheric O3 during summer in the Madrid metropolitan area, one of the largest conurbations in the Mediterranean. Comparing the outputs from five set-ups with different combinations of spatial resolution, meteorological data and vertical structure, we conclude that the model benefits from fine horizontal resolution and highly resolved vertical structure. Running optimized configuration run, we interpret O3 variability during July 2016.
Elizabeth Asher, Rebecca S. Hornbrook, Britton B. Stephens, Doug Kinnison, Eric J. Morgan, Ralph F. Keeling, Elliot L. Atlas, Sue M. Schauffler, Simone Tilmes, Eric A. Kort, Martin S. Hoecker-Martínez, Matt C. Long, Jean-François Lamarque, Alfonso Saiz-Lopez, Kathryn McKain, Colm Sweeney, Alan J. Hills, and Eric C. Apel
Atmos. Chem. Phys., 19, 14071–14090, https://doi.org/10.5194/acp-19-14071-2019, https://doi.org/10.5194/acp-19-14071-2019, 2019
Short summary
Short summary
Halogenated organic trace gases, which are a source of reactive halogens to the atmosphere, exert a disproportionately large influence on atmospheric chemistry and climate. This paper reports novel aircraft observations of halogenated compounds over the Southern Ocean in summer and evaluates hypothesized regional sources and emissions of these trace gases through their relationships to additional aircraft observations.
Andrea Spolaor, Elena Barbaro, David Cappelletti, Clara Turetta, Mauro Mazzola, Fabio Giardi, Mats P. Björkman, Federico Lucchetta, Federico Dallo, Katrine Aspmo Pfaffhuber, Hélène Angot, Aurelien Dommergue, Marion Maturilli, Alfonso Saiz-Lopez, Carlo Barbante, and Warren R. L. Cairns
Atmos. Chem. Phys., 19, 13325–13339, https://doi.org/10.5194/acp-19-13325-2019, https://doi.org/10.5194/acp-19-13325-2019, 2019
Short summary
Short summary
The main aims of the study are to (a) detect whether mercury in the surface snow undergoes a daily cycle as determined in the atmosphere, (b) compare the mercury concentration in surface snow with the concentration in the atmosphere, (c) evaluate the effect of snow depositions, (d) detect whether iodine and bromine in the surface snow undergo a daily cycle, and (e) evaluate the role of metereological and atmospheric conditions. Different behaviours were determined during different seasons.
Thomas Wagner, Steffen Beirle, Nuria Benavent, Tim Bösch, Ka Lok Chan, Sebastian Donner, Steffen Dörner, Caroline Fayt, Udo Frieß, David García-Nieto, Clio Gielen, David González-Bartolome, Laura Gomez, François Hendrick, Bas Henzing, Jun Li Jin, Johannes Lampel, Jianzhong Ma, Kornelia Mies, Mónica Navarro, Enno Peters, Gaia Pinardi, Olga Puentedura, Janis Puķīte, Julia Remmers, Andreas Richter, Alfonso Saiz-Lopez, Reza Shaiganfar, Holger Sihler, Michel Van Roozendael, Yang Wang, and Margarita Yela
Atmos. Meas. Tech., 12, 2745–2817, https://doi.org/10.5194/amt-12-2745-2019, https://doi.org/10.5194/amt-12-2745-2019, 2019
Short summary
Short summary
In this study the consistency between MAX-DOAS measurements and radiative transfer simulations of the atmospheric O4 absorption is investigated. The study is based on measurements (2 selected days during the MADCAT campaign) as well as synthetic spectra. The uncertainties of all relevant aspects (spectral retrieval and radiative transfer simulations) are quantified. For one of the selected days, measurements and simulations do not agree within their uncertainties.
Alba Badia, Claire E. Reeves, Alex R. Baker, Alfonso Saiz-Lopez, Rainer Volkamer, Theodore K. Koenig, Eric C. Apel, Rebecca S. Hornbrook, Lucy J. Carpenter, Stephen J. Andrews, Tomás Sherwen, and Roland von Glasow
Atmos. Chem. Phys., 19, 3161–3189, https://doi.org/10.5194/acp-19-3161-2019, https://doi.org/10.5194/acp-19-3161-2019, 2019
Short summary
Short summary
The oceans have an impact on the composition and reactivity of the troposphere through the emission of gases and particles. Thus, a quantitative understanding of the marine atmosphere is crucial to examine the oxidative capacity and climate forcing. This study investigates the impact of halogens in the tropical troposphere and explores the sensitivity of this to uncertainties in the fluxes and their chemical processing. Our modelled tropospheric Ox loss due to halogens ranges from 20 % to 60 %.
Cristina Carnerero, Noemí Pérez, Cristina Reche, Marina Ealo, Gloria Titos, Hong-Ku Lee, Hee-Ram Eun, Yong-Hee Park, Lubna Dada, Pauli Paasonen, Veli-Matti Kerminen, Enrique Mantilla, Miguel Escudero, Francisco J. Gómez-Moreno, Elisabeth Alonso-Blanco, Esther Coz, Alfonso Saiz-Lopez, Brice Temime-Roussel, Nicolas Marchand, David C. S. Beddows, Roy M. Harrison, Tuukka Petäjä, Markku Kulmala, Kang-Ho Ahn, Andrés Alastuey, and Xavier Querol
Atmos. Chem. Phys., 18, 16601–16618, https://doi.org/10.5194/acp-18-16601-2018, https://doi.org/10.5194/acp-18-16601-2018, 2018
Short summary
Short summary
The vertical distribution of new particle formation events was studied using tethered balloons carrying miniaturized instrumentation. Results show that new particle formation and growth occurs only in the lower layer of the atmosphere, where aerosols are mixed due to convection, especially when the atmosphere is clean. A comparison of urban and suburban surface stations was also made, suggesting that such events may have a significant impact on ultrafine particle concentrations in a wide area.
Xavier Querol, Andrés Alastuey, Gotzon Gangoiti, Noemí Perez, Hong K. Lee, Heeram R. Eun, Yonghee Park, Enrique Mantilla, Miguel Escudero, Gloria Titos, Lucio Alonso, Brice Temime-Roussel, Nicolas Marchand, Juan R. Moreta, M. Arantxa Revuelta, Pedro Salvador, Begoña Artíñano, Saúl García dos Santos, Mónica Anguas, Alberto Notario, Alfonso Saiz-Lopez, Roy M. Harrison, Millán Millán, and Kang-Ho Ahn
Atmos. Chem. Phys., 18, 6511–6533, https://doi.org/10.5194/acp-18-6511-2018, https://doi.org/10.5194/acp-18-6511-2018, 2018
Short summary
Short summary
We show the main drivers of high O3 episodes in and around Madrid. High levels of ultrafine particles (UFPs) are evidenced, but we demonstrate that most O3 arises from the fumigation of high atmospheric layers, whereas UFPs are generated inside the PBL. O3 contributions from the fumigation of the vertical recirculation of regional air masses, hemispheric transport, and horizontally from direct urban plume transport are shown. Complexity arises from the need to quantify them to abate surface O3.
Theodore K. Koenig, Rainer Volkamer, Sunil Baidar, Barbara Dix, Siyuan Wang, Daniel C. Anderson, Ross J. Salawitch, Pamela A. Wales, Carlos A. Cuevas, Rafael P. Fernandez, Alfonso Saiz-Lopez, Mathew J. Evans, Tomás Sherwen, Daniel J. Jacob, Johan Schmidt, Douglas Kinnison, Jean-François Lamarque, Eric C. Apel, James C. Bresch, Teresa Campos, Frank M. Flocke, Samuel R. Hall, Shawn B. Honomichl, Rebecca Hornbrook, Jørgen B. Jensen, Richard Lueb, Denise D. Montzka, Laura L. Pan, J. Michael Reeves, Sue M. Schauffler, Kirk Ullmann, Andrew J. Weinheimer, Elliot L. Atlas, Valeria Donets, Maria A. Navarro, Daniel Riemer, Nicola J. Blake, Dexian Chen, L. Gregory Huey, David J. Tanner, Thomas F. Hanisco, and Glenn M. Wolfe
Atmos. Chem. Phys., 17, 15245–15270, https://doi.org/10.5194/acp-17-15245-2017, https://doi.org/10.5194/acp-17-15245-2017, 2017
Short summary
Short summary
Tropospheric inorganic bromine (BrO and Bry) shows a C-shaped profile over the tropical western Pacific Ocean, and supports previous speculation that marine convection is a source for inorganic bromine from sea salt to the upper troposphere. The Bry profile in the tropical tropopause layer (TTL) is complex, suggesting that the total Bry budget in the TTL is not closed without considering aerosol bromide. The implications for atmospheric composition and bromine sources are discussed.
Maria A. Navarro, Alfonso Saiz-Lopez, Carlos A. Cuevas, Rafael P. Fernandez, Elliot Atlas, Xavier Rodriguez-Lloveras, Douglas Kinnison, Jean-Francois Lamarque, Simone Tilmes, Troy Thornberry, Andrew Rollins, James W. Elkins, Eric J. Hintsa, and Fred L. Moore
Atmos. Chem. Phys., 17, 9917–9930, https://doi.org/10.5194/acp-17-9917-2017, https://doi.org/10.5194/acp-17-9917-2017, 2017
Short summary
Short summary
Inorganic bromine (Bry) plays an important role in ozone layer depletion. Based on aircraft observations of organic bromine species and chemistry simulations, we model the Bry abundances over the Pacific tropical tropopause. Our results show BrO and Br as the dominant species during daytime hours, and BrCl and BrONO2 as the nighttime dominant species over the western and eastern Pacific, respectively. The difference in the partitioning is due to changes in the abundance of O3, NO2, and Cly.
Enno Peters, Gaia Pinardi, André Seyler, Andreas Richter, Folkard Wittrock, Tim Bösch, Michel Van Roozendael, François Hendrick, Theano Drosoglou, Alkiviadis F. Bais, Yugo Kanaya, Xiaoyi Zhao, Kimberly Strong, Johannes Lampel, Rainer Volkamer, Theodore Koenig, Ivan Ortega, Olga Puentedura, Mónica Navarro-Comas, Laura Gómez, Margarita Yela González, Ankie Piters, Julia Remmers, Yang Wang, Thomas Wagner, Shanshan Wang, Alfonso Saiz-Lopez, David García-Nieto, Carlos A. Cuevas, Nuria Benavent, Richard Querel, Paul Johnston, Oleg Postylyakov, Alexander Borovski, Alexander Elokhov, Ilya Bruchkouski, Haoran Liu, Cheng Liu, Qianqian Hong, Claudia Rivera, Michel Grutter, Wolfgang Stremme, M. Fahim Khokhar, Junaid Khayyam, and John P. Burrows
Atmos. Meas. Tech., 10, 955–978, https://doi.org/10.5194/amt-10-955-2017, https://doi.org/10.5194/amt-10-955-2017, 2017
Short summary
Short summary
This work is about harmonization of differential optical absorption spectroscopy retrieval codes, which is a remote sensing technique widely used to derive atmospheric trace gas amounts. The study is based on ground-based measurements performed during the Multi-Axis DOAS Comparison campaign for Aerosols and Trace gases (MAD-CAT) in Mainz, Germany, in summer 2013. In total, 17 international groups working in the field of the DOAS technique participated in this study.
Paul Vallelonga, Niccolo Maffezzoli, Andrew D. Moy, Mark A. J. Curran, Tessa R. Vance, Ross Edwards, Gwyn Hughes, Emily Barker, Gunnar Spreen, Alfonso Saiz-Lopez, J. Pablo Corella, Carlos A. Cuevas, and Andrea Spolaor
Clim. Past, 13, 171–184, https://doi.org/10.5194/cp-13-171-2017, https://doi.org/10.5194/cp-13-171-2017, 2017
Short summary
Short summary
We present a study of bromine, iodine and sodium in an ice core from Law Dome, in coastal East Antarctica. We find that bromine and iodine variability at Law Dome is correlated to changes in the area of sea ice along the Law Dome coast as observed by satellite since the early 1970s. These findings are in agreement with a previous study based on MSA and confirm a long-term trend of sea ice decrease for this sector of Antarctica over the 20th century.
Rafael P. Fernandez, Douglas E. Kinnison, Jean-Francois Lamarque, Simone Tilmes, and Alfonso Saiz-Lopez
Atmos. Chem. Phys., 17, 1673–1688, https://doi.org/10.5194/acp-17-1673-2017, https://doi.org/10.5194/acp-17-1673-2017, 2017
Short summary
Short summary
The inclusion of biogenic very-short lived bromine (VSLBr) in a chemistry-climate model produces an expansion of the ozone hole area of ~ 5 million km2, which is equivalent in magnitude to the recently estimated Antarctic ozone healing due to the reduction of anthropogenic CFCs and halons. The maximum Antarctic ozone hole depletion increases by up to 14 % when natural VSLBr are considered, but does not introduce a significant delay of the modelled ozone return date to 1980 October levels.
Alfonso Saiz-Lopez, John M. C. Plane, Carlos A. Cuevas, Anoop S. Mahajan, Jean-François Lamarque, and Douglas E. Kinnison
Atmos. Chem. Phys., 16, 15593–15604, https://doi.org/10.5194/acp-16-15593-2016, https://doi.org/10.5194/acp-16-15593-2016, 2016
Short summary
Short summary
Electronic structure calculations are used to survey possible reactions that HOI and I2 could undergo at night in the lower troposphere, and hence reconcile measurements and models. The reactions NO3 + HOI and I2 + NO3 are included in two models to explore a new nocturnal iodine radical activation mechanism, leading to a reduction of nighttime HOI and I2. This chemistry can have a large impact on NO3 levels in the MBL, and hence upon the nocturnal oxidizing capacity of the marine atmosphere.
Shanshan Wang, Carlos A. Cuevas, Udo Frieß, and Alfonso Saiz-Lopez
Atmos. Meas. Tech., 9, 5089–5101, https://doi.org/10.5194/amt-9-5089-2016, https://doi.org/10.5194/amt-9-5089-2016, 2016
Short summary
Short summary
Multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements were performed in the urban environment of Madrid, Spain, where Sahara dust intrusion sometimes occurs. The study shows a high performances in the retrieval of aerosol optical depth, the surface extinction coefficient and an elevated layer during dust episodes, validated by AERONET in situ and modeling data. It is essential to capture the extinction properties of both local aerosol and Saharan dust.
Óscar Gálvez, M. Teresa Baeza-Romero, Mikel Sanz, and Alfonso Saiz-Lopez
Atmos. Chem. Phys., 16, 12703–12713, https://doi.org/10.5194/acp-16-12703-2016, https://doi.org/10.5194/acp-16-12703-2016, 2016
Short summary
Short summary
Reactive iodine species play a key role in the oxidation capacity of the polar troposphere, although sources and mechanisms are poorly understood. In this paper, the photolysis of frozen iodate salt has been studied, confirming that under near-UV–Vis radiation iodate is photolysed. Incorporating this result into an Antarctic atmospheric model, we have shown that it could increase the atmospheric IO levels and could constitute a pathway for the release of active iodine to the polar atmosphere
Tomás Sherwen, Johan A. Schmidt, Mat J. Evans, Lucy J. Carpenter, Katja Großmann, Sebastian D. Eastham, Daniel J. Jacob, Barbara Dix, Theodore K. Koenig, Roman Sinreich, Ivan Ortega, Rainer Volkamer, Alfonso Saiz-Lopez, Cristina Prados-Roman, Anoop S. Mahajan, and Carlos Ordóñez
Atmos. Chem. Phys., 16, 12239–12271, https://doi.org/10.5194/acp-16-12239-2016, https://doi.org/10.5194/acp-16-12239-2016, 2016
Short summary
Short summary
We present a simulation of tropospheric Cl, Br, I chemistry within the GEOS-Chem CTM. We find a decrease in tropospheric ozone burden of 18.6 % and a 8.2 % decrease in global mean OH concentrations. Cl oxidation of some VOCs range from 15 to 27 % of the total loss. Bromine plays a small role in oxidising oVOCs. Surface ozone, ozone sondes, and methane lifetime are in general improved by the inclusion of halogens. We argue that simulated bromine and chlorine represent a lower limit.
R. Hossaini, P. K. Patra, A. A. Leeson, G. Krysztofiak, N. L. Abraham, S. J. Andrews, A. T. Archibald, J. Aschmann, E. L. Atlas, D. A. Belikov, H. Bönisch, L. J. Carpenter, S. Dhomse, M. Dorf, A. Engel, W. Feng, S. Fuhlbrügge, P. T. Griffiths, N. R. P. Harris, R. Hommel, T. Keber, K. Krüger, S. T. Lennartz, S. Maksyutov, H. Mantle, G. P. Mills, B. Miller, S. A. Montzka, F. Moore, M. A. Navarro, D. E. Oram, K. Pfeilsticker, J. A. Pyle, B. Quack, A. D. Robinson, E. Saikawa, A. Saiz-Lopez, S. Sala, B.-M. Sinnhuber, S. Taguchi, S. Tegtmeier, R. T. Lidster, C. Wilson, and F. Ziska
Atmos. Chem. Phys., 16, 9163–9187, https://doi.org/10.5194/acp-16-9163-2016, https://doi.org/10.5194/acp-16-9163-2016, 2016
T. Sherwen, M. J. Evans, L. J. Carpenter, S. J. Andrews, R. T. Lidster, B. Dix, T. K. Koenig, R. Sinreich, I. Ortega, R. Volkamer, A. Saiz-Lopez, C. Prados-Roman, A. S. Mahajan, and C. Ordóñez
Atmos. Chem. Phys., 16, 1161–1186, https://doi.org/10.5194/acp-16-1161-2016, https://doi.org/10.5194/acp-16-1161-2016, 2016
Short summary
Short summary
Using a global chemical transport model (GEOS-Chem) with additional iodine emissions, chemistry, and deposition we show that iodine is responsible for ~ 9 % of global ozone loss but has negligible impacts on global OH. Uncertainties are large in the chemistry and emissions and future research is needed in both. Measurements of iodine species (especially HOI) would be useful. We believe iodine chemistry should be considered in future chemistry-climate and in air quality modelling.
A. Spolaor, T. Opel, J. R. McConnell, O. J. Maselli, G. Spreen, C. Varin, T. Kirchgeorg, D. Fritzsche, A. Saiz-Lopez, and P. Vallelonga
The Cryosphere, 10, 245–256, https://doi.org/10.5194/tc-10-245-2016, https://doi.org/10.5194/tc-10-245-2016, 2016
Short summary
Short summary
The role of sea ice in the Earth climate system is still under debate, although it is known to influence albedo, ocean circulation, and atmosphere-ocean heat and gas exchange. Here we present a reconstruction of 1950 to 1998 AD sea ice in the Laptev Sea based on the Akademii Nauk ice core (Severnaya Zemlya, Russian Arctic) and halogen measurements. The results suggest a connection between bromine and sea ice, as well as a connection between iodine concentration in snow and summer sea ice.
M. Gil-Ojeda, M. Navarro-Comas, L. Gómez-Martín, J. A. Adame, A. Saiz-Lopez, C. A. Cuevas, Y. González, O. Puentedura, E. Cuevas, J.-F. Lamarque, D. Kinninson, and S. Tilmes
Atmos. Chem. Phys., 15, 10567–10579, https://doi.org/10.5194/acp-15-10567-2015, https://doi.org/10.5194/acp-15-10567-2015, 2015
Short summary
Short summary
The NO2 seasonal evolution in the free troposphere (FT) has been established for the first time, based on a remote sensing technique (MAXDOAS) and thus avoiding the problems of the local pollution of in situ instruments. A clear seasonality has been found, with background levels of 20-40pptv. Evidence has been found on fast, direct injection of surface air into the free troposphere. This result might have implications on the FT distribution of halogens and other species with marine sources.
A. Saiz-Lopez, C. S. Blaszczak-Boxe, and L. J. Carpenter
Atmos. Chem. Phys., 15, 9731–9746, https://doi.org/10.5194/acp-15-9731-2015, https://doi.org/10.5194/acp-15-9731-2015, 2015
C. Prados-Roman, C. A. Cuevas, R. P. Fernandez, D. E. Kinnison, J-F. Lamarque, and A. Saiz-Lopez
Atmos. Chem. Phys., 15, 2215–2224, https://doi.org/10.5194/acp-15-2215-2015, https://doi.org/10.5194/acp-15-2215-2015, 2015
R. P. Fernandez, R. J. Salawitch, D. E. Kinnison, J.-F. Lamarque, and A. Saiz-Lopez
Atmos. Chem. Phys., 14, 13391–13410, https://doi.org/10.5194/acp-14-13391-2014, https://doi.org/10.5194/acp-14-13391-2014, 2014
Short summary
Short summary
We propose the existence of a daytime “tropical ring of atomic bromine” surrounding the tropics at a height between 15 and 19km. Our simulations show that VSL bromocarbons produce increases of 3pptv for inorganic bromine and 2pptv for organic bromine in the tropical TTL on an annual average, resulting in a total stratospheric bromine injection of 5pptv. This result suggests that the inorganic bromine injected into the stratosphere may be larger than that from VSL bromocarbons.
A. Saiz-Lopez, R. P. Fernandez, C. Ordóñez, D. E. Kinnison, J. C. Gómez Martín, J.-F. Lamarque, and S. Tilmes
Atmos. Chem. Phys., 14, 13119–13143, https://doi.org/10.5194/acp-14-13119-2014, https://doi.org/10.5194/acp-14-13119-2014, 2014
S. M. MacDonald, J. C. Gómez Martín, R. Chance, S. Warriner, A. Saiz-Lopez, L. J. Carpenter, and J. M. C. Plane
Atmos. Chem. Phys., 14, 5841–5852, https://doi.org/10.5194/acp-14-5841-2014, https://doi.org/10.5194/acp-14-5841-2014, 2014
M. J. Lawler, A. S. Mahajan, A. Saiz-Lopez, and E. S. Saltzman
Atmos. Chem. Phys., 14, 2669–2678, https://doi.org/10.5194/acp-14-2669-2014, https://doi.org/10.5194/acp-14-2669-2014, 2014
F. Wang, A. Saiz-Lopez, A. S. Mahajan, J. C. Gómez Martín, D. Armstrong, M. Lemes, T. Hay, and C. Prados-Roman
Atmos. Chem. Phys., 14, 1323–1335, https://doi.org/10.5194/acp-14-1323-2014, https://doi.org/10.5194/acp-14-1323-2014, 2014
R. Hossaini, H. Mantle, M. P. Chipperfield, S. A. Montzka, P. Hamer, F. Ziska, B. Quack, K. Krüger, S. Tegtmeier, E. Atlas, S. Sala, A. Engel, H. Bönisch, T. Keber, D. Oram, G. Mills, C. Ordóñez, A. Saiz-Lopez, N. Warwick, Q. Liang, W. Feng, F. Moore, B. R. Miller, V. Marécal, N. A. D. Richards, M. Dorf, and K. Pfeilsticker
Atmos. Chem. Phys., 13, 11819–11838, https://doi.org/10.5194/acp-13-11819-2013, https://doi.org/10.5194/acp-13-11819-2013, 2013
A. S. Mahajan, J. C. Gómez Martín, T. D. Hay, S.-J. Royer, S. Yvon-Lewis, Y. Liu, L. Hu, C. Prados-Roman, C. Ordóñez, J. M. C. Plane, and A. Saiz-Lopez
Atmos. Chem. Phys., 12, 11609–11617, https://doi.org/10.5194/acp-12-11609-2012, https://doi.org/10.5194/acp-12-11609-2012, 2012
Related subject area
Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
The differences between remote sensing and in situ air pollutant measurements over the Canadian oil sands
NitroNet – a machine learning model for the prediction of tropospheric NO2 profiles from TROPOMI observations
Improved convective cloud differential (CCD) tropospheric ozone from S5P-TROPOMI satellite data using local cloud fields
Atmospheric propane (C3H8) column retrievals from ground-based FTIR observations in Xianghe, China
Can the remote sensing of combustion phase improve estimates of landscape fire smoke emission rate and composition?
Tropospheric NO2 retrieval algorithm for geostationary satellite instruments: applications to GEMS
Troposphere–stratosphere-integrated bromine monoxide (BrO) profile retrieval over the central Pacific Ocean
Local and regional enhancements of CH4, CO, and CO2 inferred from TCCON column measurements
Implementation and application of an improved phase spectrum determination scheme for Fourier Transform Spectrometry
Merging TEMPEST microwave and GOES-16 geostationary IR soundings for improved water vapor profiles
Methane retrieval from MethaneAIR using the CO2 proxy approach: a demonstration for the upcoming MethaneSAT mission
Mapping the CO2 total column retrieval performance from shortwave infrared measurements: synthetic impacts of the spectral resolution, signal-to-noise ratio, and spectral band selection
Assessment of the contribution of the Meteosat Third Generation Infrared Sounder (MTG-IRS) for the characterisation of ozone over Europe
Assessing the potential of free-tropospheric water vapour isotopologue satellite observations for improving the analyses of convective events
Current potential of CH4 emission estimates using TROPOMI in the Middle East
A bias-corrected GEMS geostationary satellite product for nitrogen dioxide using machine learning to enforce consistency with the TROPOMI satellite instrument
Developments on a 22GHz Microwave Radiometer and Reprocessing of 13-Year Time Series for Water Vapour Studies
Retrievals of water vapour and temperature exploiting the far-infrared: application to aircraft observations in preparation for the FORUM mission
Retrieving the atmospheric concentrations of carbon dioxide and methane from the European Copernicus CO2M satellite mission using artificial neural networks
Quantitative estimate of sources of uncertainty in drone-based methane emission measurements
Estimation of biogenic volatile organic compound (BVOC) emissions in forest ecosystems using drone-based lidar, photogrammetry, and image recognition technologies
Fast retrieval of XCO2 over east Asia based on Orbiting Carbon Observatory-2 (OCO-2) spectral measurements
Long-term global measurements of methanol, ethene, ethyne, and HCN from the Cross-track Infrared Sounder
A new method for estimating megacity NOx emissions and lifetimes from satellite observations
Accounting for the effect of aerosols in GHGSat methane retrieval
A survey of methane point source emissions from coal mines in Shanxi province of China using AHSI on board Gaofen-5B
Global retrieval of stratospheric and tropospheric BrO columns from the Ozone Mapping and Profiler Suite Nadir Mapper (OMPS-NM) on board the Suomi-NPP satellite
IMK–IAA MIPAS retrieval version 8: CH4 and N2O
Report on Landsat 8 and Sentinel-2B observations of the Nord Stream 2 pipeline methane leak
U-Plume: automated algorithm for plume detection and source quantification by satellite point-source imagers
CH4Net: a deep learning model for monitoring methane super-emitters with Sentinel-2 imagery
Forward Model Emulator for Atmospheric Radiative Transfer Using Gaussian Processes And Cross Validation
Greenhouse gas retrievals for the CO2M mission using the FOCAL method: first performance estimates
Quantitative imaging of carbon dioxide plumes using a ground-based shortwave infrared spectral camera
The transition to new ozone absorption cross sections for Dobson and Brewer total ozone measurements
Remote sensing of lower-middle thermosphere temperatures using the N2 Lyman-Birge-Hopfield (LBH) bands
Advantages of assimilating multispectral satellite retrievals of atmospheric composition: a demonstration using MOPITT carbon monoxide products
An improved OMI ozone profile research product version 2.0 with collection 4 L1b data and algorithm updates
Tropospheric ozone column dataset from OMPS-LP/OMPS-NM limb–nadir matching
Version 8 IMK/IAA MIPAS measurements of CFC-11, CFC-12, and HCFC-22
The importance of digital elevation model accuracy in XCO2 retrievals: improving the Orbiting Carbon Observatory 2 Atmospheric Carbon Observations from Space version 11 retrieval product
Level0 to Level1B processor for MethaneAIR
Exploiting the entire near-infrared spectral range to improve the detection of methane plumes with high-resolution imaging spectrometers
A method for estimating localized CO2 emissions from co-located satellite XCO2 and NO2 images
The GeoCarb greenhouse gas retrieval algorithm: simulations and sensitivity to sources of uncertainty
Airborne lidar measurements of atmospheric CO2 column concentrations to cloud tops made during the 2017 ASCENDS/ABoVE campaign
Airborne observation with a low-cost hyperspectral instrument: retrieval of NO2 vertical column densities (VCDs) and the satellite sub-grid variability over industrial point sources
Separating and Quantifying Facility-Level Methane Emissions with Overlapping Plumes for Spaceborne Methane Monitoring
A nonlinear data-driven approach to bias correction of XCO2 for NASA's OCO-2 ACOS version 10
MIPAS ozone retrieval version 8: middle-atmosphere measurements
Xiaoyi Zhao, Vitali Fioletov, Debora Griffin, Chris McLinden, Ralf Staebler, Cristian Mihele, Kevin Strawbridge, Jonathan Davies, Ihab Abboud, Sum Chi Lee, Alexander Cede, Martin Tiefengraber, and Robert Swap
Atmos. Meas. Tech., 17, 6889–6912, https://doi.org/10.5194/amt-17-6889-2024, https://doi.org/10.5194/amt-17-6889-2024, 2024
Short summary
Short summary
This study explores differences between remote sensing and in situ instruments in terms of their vertical, horizontal, and temporal sampling differences. Understanding and resolving these differences are critical for future analyses linking satellite, ground-based remote sensing, and in situ observations in air quality monitoring. It shows that the meteorological conditions (wind directions, speed, and boundary layer conditions) will strongly affect the agreement between the two measurements.
Leon Kuhn, Steffen Beirle, Sergey Osipov, Andrea Pozzer, and Thomas Wagner
Atmos. Meas. Tech., 17, 6485–6516, https://doi.org/10.5194/amt-17-6485-2024, https://doi.org/10.5194/amt-17-6485-2024, 2024
Short summary
Short summary
This paper presents a new machine learning model that allows us to compute NO2 concentration profiles from satellite observations. A neural network was trained on synthetic data from the regional chemistry and transport model WRF-Chem. This is the first model of its kind. We present a thorough model validation study, covering various seasons and regions of the world.
Swathi Maratt Satheesan, Kai-Uwe Eichmann, John P. Burrows, Mark Weber, Ryan Stauffer, Anne M. Thompson, and Debra Kollonige
Atmos. Meas. Tech., 17, 6459–6484, https://doi.org/10.5194/amt-17-6459-2024, https://doi.org/10.5194/amt-17-6459-2024, 2024
Short summary
Short summary
CHORA, an advanced cloud convective differential technique, enhances the accuracy of tropospheric-ozone retrievals. Unlike the traditional Pacific cloud reference sector scheme, CHORA introduces a local-cloud reference sector and an alternative approach (CLCT) for precision. Analysing monthly averaged TROPOMI data from 2018 to 2022 and validating with SHADOZ ozonesonde data, CLCT outperforms other methods and so is the preferred choice, especially in future geostationary satellite missions.
Minqiang Zhou, Pucai Wang, Bart Dils, Bavo Langerock, Geoff Toon, Christian Hermans, Weidong Nan, Qun Cheng, and Martine De Mazière
Atmos. Meas. Tech., 17, 6385–6396, https://doi.org/10.5194/amt-17-6385-2024, https://doi.org/10.5194/amt-17-6385-2024, 2024
Short summary
Short summary
Solar absorption spectra near 2967 cm−1 recorded by a ground-based FTIR with a high spectral resolution of 0.0035 cm-1 are applied to retrieve C3H8 columns for the first time in Xianghe, China, within the NDACC-IRWG. The mean and standard deviation of the C3H8 columns are 1.80 ± 0.81 (1σ) × 1015 molec. cm-2. Good correlations are found between C3H8 and other non-methane hydrocarbons, such as C2H6 (R = 0.84) and C2H2 (R = 0.79), as well as between C3H8 and CO (R = 0.72).
Farrer Owsley-Brown, Martin J. Wooster, Mark J. Grosvenor, and Yanan Liu
Atmos. Meas. Tech., 17, 6247–6264, https://doi.org/10.5194/amt-17-6247-2024, https://doi.org/10.5194/amt-17-6247-2024, 2024
Short summary
Short summary
Landscape fires produce vast amounts of smoke, affecting the atmosphere locally and globally. Whether a fire is flaming or smouldering strongly impacts the rate at which smoke is produced as well as its composition. This study tested two methods to determine these combustion phases in laboratory fires and compared them to the smoke emitted. One of these methods improved estimates of smoke emission significantly. This suggests potential for improvement in global emission estimates.
Sora Seo, Pieter Valks, Ronny Lutz, Klaus-Peter Heue, Pascal Hedelt, Víctor Molina García, Diego Loyola, Hanlim Lee, and Jhoon Kim
Atmos. Meas. Tech., 17, 6163–6191, https://doi.org/10.5194/amt-17-6163-2024, https://doi.org/10.5194/amt-17-6163-2024, 2024
Short summary
Short summary
In this study, we developed an advanced retrieval algorithm for tropospheric NO2 columns from geostationary satellite spectrometers and applied it to GEMS measurements. The DLR GEMS NO2 retrieval algorithm follows the heritage from previous and existing algorithms, but improved approaches are applied to reflect the specific features of geostationary satellites. The DLR GEMS NO2 retrievals demonstrate a good capability for monitoring diurnal variability with a high spatial resolution.
Theodore K. Koenig, François Hendrick, Douglas Kinnison, Christopher F. Lee, Michel Van Roozendael, and Rainer Volkamer
Atmos. Meas. Tech., 17, 5911–5934, https://doi.org/10.5194/amt-17-5911-2024, https://doi.org/10.5194/amt-17-5911-2024, 2024
Short summary
Short summary
Atmospheric bromine destroys ozone, impacts oxidation capacity, and oxidizes mercury into its toxic form. We constrain bromine by remote sensing of BrO from a mountaintop. Previous measurements retrieved two to three pieces of information vertically; we apply new methods to get five and a half vertically and two more in time. We compare with aircraft measurements to validate the methods and look at variations in BrO over the Pacific.
Kavitha Mottungan, Chayan Roychoudhury, Vanessa Brocchi, Benjamin Gaubert, Wenfu Tang, Mohammad Amin Mirrezaei, John McKinnon, Yafang Guo, David W. T. Griffith, Dietrich G. Feist, Isamu Morino, Mahesh K. Sha, Manvendra K. Dubey, Martine De Mazière, Nicholas M. Deutscher, Paul O. Wennberg, Ralf Sussmann, Rigel Kivi, Tae-Young Goo, Voltaire A. Velazco, Wei Wang, and Avelino F. Arellano Jr.
Atmos. Meas. Tech., 17, 5861–5885, https://doi.org/10.5194/amt-17-5861-2024, https://doi.org/10.5194/amt-17-5861-2024, 2024
Short summary
Short summary
A combination of data analysis techniques is introduced to separate local and regional influences on observed levels of carbon dioxide, carbon monoxide, and methane from an established ground-based remote sensing network. We take advantage of the covariations in these trace gases to identify the dominant type of sources driving these levels. Applying these methods in conjunction with existing approaches to other datasets can better address uncertainties in identifying sources and sinks.
Frank Hase, Paolo Castracane, Angelika Dehn, Omaira Elena García, David W. T. Griffith, Lukas Heizmann, Nicholas B. Jones, Tomi Karppinen, Rigel Kivi, Martine de Mazière, Justus Notholt, and Mahesh Kumar Sha
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-140, https://doi.org/10.5194/amt-2024-140, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
The primary measurement result delivered by a Fourier Transform spectrometer is an interferogram, and the spectrum required for further analysis needs to be calculated from the interferogram by a Fourier analysis. The paper deals with technical aspects of this process and shows how the reconstruction of the spectrum can be optimized.
Chia-Pang Kuo and Christian Kummerow
Atmos. Meas. Tech., 17, 5637–5653, https://doi.org/10.5194/amt-17-5637-2024, https://doi.org/10.5194/amt-17-5637-2024, 2024
Short summary
Short summary
A small satellite about the size of a shoe box, named TEMPEST, carries only a microwave sensor and is designed to measure the water cycle of the Earth from space in an economical way compared with traditional satellites, which have additional infrared sensors. To overcome the limitation, extra infrared signals from GOES-R ABI are combined with TEMPEST microwave measurements. Compared with ground observations, improved humidity information is extracted from the merged TEMPEST and ABI signals.
Christopher Chan Miller, Sébastien Roche, Jonas S. Wilzewski, Xiong Liu, Kelly Chance, Amir H. Souri, Eamon Conway, Bingkun Luo, Jenna Samra, Jacob Hawthorne, Kang Sun, Carly Staebell, Apisada Chulakadabba, Maryann Sargent, Joshua S. Benmergui, Jonathan E. Franklin, Bruce C. Daube, Yang Li, Joshua L. Laughner, Bianca C. Baier, Ritesh Gautam, Mark Omara, and Steven C. Wofsy
Atmos. Meas. Tech., 17, 5429–5454, https://doi.org/10.5194/amt-17-5429-2024, https://doi.org/10.5194/amt-17-5429-2024, 2024
Short summary
Short summary
MethaneSAT is an upcoming satellite mission designed to monitor methane emissions from the oil and gas (O&G) industry globally. Here, we present observations from the first flight campaign of MethaneAIR, a MethaneSAT-like instrument mounted on an aircraft. MethaneAIR can map methane with high precision and accuracy over a typically sized oil and gas basin (~200 km2) in a single flight. This paper demonstrates the capability of the upcoming satellite to routinely track global O&G emissions.
Matthieu Dogniaux and Cyril Crevoisier
Atmos. Meas. Tech., 17, 5373–5396, https://doi.org/10.5194/amt-17-5373-2024, https://doi.org/10.5194/amt-17-5373-2024, 2024
Short summary
Short summary
Many CO2-observing satellite concepts, with very different design choices and trade-offs, are expected to be put into orbit during the upcoming decade. This work uses numerical simulations to explore the impact of critical design parameters on the performance of upcoming CO2-observing satellite concepts.
Francesca Vittorioso, Vincent Guidard, and Nadia Fourrié
Atmos. Meas. Tech., 17, 5279–5299, https://doi.org/10.5194/amt-17-5279-2024, https://doi.org/10.5194/amt-17-5279-2024, 2024
Short summary
Short summary
The future Meteosat Third Generation Infrared Sounder (MTG-IRS) will represent a major innovation for the monitoring of the chemical state of the atmosphere. MTG-IRS will have the advantage of being based on a geostationary platform and acquiring data with a high temporal frequency. This work aims to evaluate its potential impact over Europe within a chemical transport model (MOCAGE). The results indicate that the assimilation of these data always has a positive impact on ozone analysis.
Matthias Schneider, Kinya Toride, Farahnaz Khosrawi, Frank Hase, Benjamin Ertl, Christopher J. Diekmann, and Kei Yoshimura
Atmos. Meas. Tech., 17, 5243–5259, https://doi.org/10.5194/amt-17-5243-2024, https://doi.org/10.5194/amt-17-5243-2024, 2024
Short summary
Short summary
Despite its importance for extreme weather and climate feedbacks, atmospheric convection is not well constrained. This study assesses the potential of novel tropospheric water vapour isotopologue satellite observations for improving the analyses of convective events. We find that the impact of the isotopologues is small for stable atmospheric conditions but significant for unstable conditions, which have the strongest societal impacts (e.g. storms and flooding).
Mengyao Liu, Ronald van der A, Michiel van Weele, Lotte Bryan, Henk Eskes, Pepijn Veefkind, Yongxue Liu, Xiaojuan Lin, Jos de Laat, and Jieying Ding
Atmos. Meas. Tech., 17, 5261–5277, https://doi.org/10.5194/amt-17-5261-2024, https://doi.org/10.5194/amt-17-5261-2024, 2024
Short summary
Short summary
A new divergence method was developed and applied to estimate methane emissions from TROPOMI observations over the Middle East, where it is typically challenging for a satellite to measure methane due to its complicated orography and surface albedo. Our results show the potential of TROPOMI to quantify methane emissions from various sources rather than big emitters from space after objectively excluding the artifacts in the retrieval.
Yujin J. Oak, Daniel J. Jacob, Nicholas Balasus, Laura H. Yang, Heesung Chong, Junsung Park, Hanlim Lee, Gitaek T. Lee, Eunjo S. Ha, Rokjin J. Park, Hyeong-Ahn Kwon, and Jhoon Kim
Atmos. Meas. Tech., 17, 5147–5159, https://doi.org/10.5194/amt-17-5147-2024, https://doi.org/10.5194/amt-17-5147-2024, 2024
Short summary
Short summary
We present an improved NO2 product from GEMS by calibrating it to TROPOMI using machine learning and by reprocessing both satellite products to adopt common NO2 profiles. Our corrected GEMS product combines the high data density of GEMS with the accuracy of TROPOMI, supporting the combined use for analyses of East Asia air quality including emissions and chemistry. This method can be extended to other species and geostationary satellites including TEMPO and Sentinel-4.
Alistair Bell, Eric Sauvageat, Gunter Stober, Klemens Hocke, and Axel Murk
EGUsphere, https://doi.org/10.5194/egusphere-2024-2474, https://doi.org/10.5194/egusphere-2024-2474, 2024
Short summary
Short summary
Hardware and software developments have been made on a 22 GHz microwave radiometer for the measurement of middle atmosphere water vapour near Bern, Switzerland. Previous measurements dating back to 2010 have been re-calibrated and an improved optimal estimation retrieval performed on these measurements, giving a 13 year long dataset. Measurements made with new and improved instrumental hardware are used to correct previous measurements, which show better agreement than the non-corrected dataset.
Sanjeevani Panditharatne, Helen Brindley, Caroline Cox, Richard Siddans, Jonathan Murray, Laura Warwick, and Stuart Fox
EGUsphere, https://doi.org/10.5194/egusphere-2024-2419, https://doi.org/10.5194/egusphere-2024-2419, 2024
Short summary
Short summary
Understanding the distribution of water vapour within our atmosphere is vital for understanding the Earth’s energy balance. Observations from the upcoming FORUM satellite are theorised to be particularly sensitive to this distribution. We exploit this sensitivity to extend the RAL Infrared Microwave Sounding retrieval scheme for the FORUM satellite. This scheme is evaluated on both simulated and observed measurements and shows a good agreement to references of the atmospheric state.
Maximilian Reuter, Michael Hilker, Stefan Noël, Antonio Di Noia, Michael Weimer, Oliver Schneising, Michael Buchwitz, Heinrich Bovensmann, John P. Burrows, Hartmut Bösch, and Ruediger Lang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2365, https://doi.org/10.5194/egusphere-2024-2365, 2024
Short summary
Short summary
Carbon dioxide (CO2) and methane (CH4) are the main anthropogenic greenhouse gases. The European Copernicus CO2 monitoring satellite mission CO2M will provide measurements of their atmospheric concentrations, but the accuracy requirements are demanding and conventional retrieval methods computationally expensive. We present a new retrieval algorithm based on artificial neural networks that has the potential to meet the stringent requirements of the CO2M mission with minimal computational effort.
Tannaz H. Mohammadloo, Matthew Jones, Bas van de Kerkhof, Kyle Dawson, Brendan James Smith, Stephen Conley, Abigail Corbett, and Rutger IJzermans
EGUsphere, https://doi.org/10.5194/egusphere-2024-1175, https://doi.org/10.5194/egusphere-2024-1175, 2024
Short summary
Short summary
Methane is a potent greenhouse gas. Trustable detection and quantification of methane emissions at facility level is critical to identify the largest sources, and to prioritize them for repair. We provide a systematic analysis of the uncertainty in drone-based methane emission surveys, based on theoretical considerations and historical data sets. We provide guidelines to industry on how to avoid or minimize potential errors in drone-based measurements for methane emission quantification.
Xianzhong Duan, Ming Chang, Guotong Wu, Suping Situ, Shengjie Zhu, Qi Zhang, Yibo Huangfu, Weiwen Wang, Weihua Chen, Bin Yuan, and Xuemei Wang
Atmos. Meas. Tech., 17, 4065–4079, https://doi.org/10.5194/amt-17-4065-2024, https://doi.org/10.5194/amt-17-4065-2024, 2024
Short summary
Short summary
Accurately estimating biogenic volatile organic compound (BVOC) emissions in forest ecosystems has been challenging. This research presents a framework that utilizes drone-based lidar, photogrammetry, and image recognition technologies to identify plant species and estimate BVOC emissions. The largest cumulative isoprene emissions were found in the Myrtaceae family, while those of monoterpenes were from the Rubiaceae family.
Fengxin Xie, Tao Ren, Changying Zhao, Yuan Wen, Yilei Gu, Minqiang Zhou, Pucai Wang, Kei Shiomi, and Isamu Morino
Atmos. Meas. Tech., 17, 3949–3967, https://doi.org/10.5194/amt-17-3949-2024, https://doi.org/10.5194/amt-17-3949-2024, 2024
Short summary
Short summary
This study demonstrates a new machine learning approach to efficiently and accurately estimate atmospheric carbon dioxide levels from satellite data. Rather than using traditional complex physics-based retrieval methods, neural network models are trained on simulated data to rapidly predict CO2 concentrations directly from satellite spectral measurements.
Kelley Wells, Dylan Millet, Jared Brewer, Vivienne Payne, Karen Cady-Pereira, Rick Pernak, Susan Kulawik, Corinne Vigouroux, Nicholas Jones, Emmanuel Mahieu, Maria Makarova, Tomoo Nagahama, Ivan Ortega, Mathias Palm, Kimberly Strong, Matthias Schneider, Dan Smale, Ralf Sussmann, and Minqiang Zhou
EGUsphere, https://doi.org/10.5194/egusphere-2024-1551, https://doi.org/10.5194/egusphere-2024-1551, 2024
Short summary
Short summary
Atmospheric volatile organic compounds affect both air quality and climate. Satellite measurements can help us to assess and predict their global impacts. We present new long-term (2012–2023) measurements of four key VOCs: methanol, ethene, ethyne, and hydrogen cyanide (HCN) from the Cross-track Infrared Sounder. The measurements reflect emissions from major forests, wildfires, and industry, and provide new information to advance understanding of these sources and their changes over time.
Steffen Beirle and Thomas Wagner
Atmos. Meas. Tech., 17, 3439–3453, https://doi.org/10.5194/amt-17-3439-2024, https://doi.org/10.5194/amt-17-3439-2024, 2024
Short summary
Short summary
We present a new method for estimating emissions and lifetimes for nitrogen oxides emitted from large cities by using satellite NO2 observations combined with wind fields. The estimate is based on the simultaneous evaluation of the downwind plumes for opposing wind directions. This allows us to derive seasonal mean emissions and lifetimes for 100 cities around the globe.
Qiurun Yu, Dylan Jervis, and Yi Huang
Atmos. Meas. Tech., 17, 3347–3366, https://doi.org/10.5194/amt-17-3347-2024, https://doi.org/10.5194/amt-17-3347-2024, 2024
Short summary
Short summary
This study estimated the effects of aerosols on GHGSat satellite methane retrieval and investigated the performance of simultaneously retrieving aerosol and methane information using a multi-angle viewing method. Results suggested that the performance of GHGSat methane retrieval improved when aerosols were considered, and the multi-angle viewing method is insensitive to the satellite angle setting. This performance assessment is useful for improving future GHGSat-like instruments.
Zhonghua He, Ling Gao, Miao Liang, and Zhao-Cheng Zeng
Atmos. Meas. Tech., 17, 2937–2956, https://doi.org/10.5194/amt-17-2937-2024, https://doi.org/10.5194/amt-17-2937-2024, 2024
Short summary
Short summary
Using Gaofen-5B satellite data, this study detected 93 methane plume events from 32 coal mines in Shanxi, China, with emission rates spanning from 761.78 ± 185.00 to 12729.12 ± 4658.13 kg h-1, showing significant variability among sources. This study highlights Gaofen-5B’s capacity for monitoring large methane point sources, offering valuable support in reducing greenhouse gas emissions.
Heesung Chong, Gonzalo González Abad, Caroline R. Nowlan, Christopher Chan Miller, Alfonso Saiz-Lopez, Rafael P. Fernandez, Hyeong-Ahn Kwon, Zolal Ayazpour, Huiqun Wang, Amir H. Souri, Xiong Liu, Kelly Chance, Ewan O'Sullivan, Jhoon Kim, Ja-Ho Koo, William R. Simpson, François Hendrick, Richard Querel, Glen Jaross, Colin Seftor, and Raid M. Suleiman
Atmos. Meas. Tech., 17, 2873–2916, https://doi.org/10.5194/amt-17-2873-2024, https://doi.org/10.5194/amt-17-2873-2024, 2024
Short summary
Short summary
We present a new bromine monoxide (BrO) product derived using radiances measured from OMPS-NM on board the Suomi-NPP satellite. This product provides nearly a decade of global stratospheric and tropospheric column retrievals, a feature that is currently rare in publicly accessible datasets. Both stratospheric and tropospheric columns from OMPS-NM demonstrate robust performance, exhibiting good agreement with ground-based observations collected at three stations (Lauder, Utqiagvik, and Harestua).
Norbert Glatthor, Thomas von Clarmann, Bernd Funke, Maya García-Comas, Udo Grabowski, Michael Höpfner, Sylvia Kellmann, Michael Kiefer, Alexandra Laeng, Andrea Linden, Manuel López-Puertas, and Gabriele P. Stiller
Atmos. Meas. Tech., 17, 2849–2871, https://doi.org/10.5194/amt-17-2849-2024, https://doi.org/10.5194/amt-17-2849-2024, 2024
Short summary
Short summary
We present global atmospheric methane (CH4) and nitrous oxide (N2O) distributions retrieved from measurements of the MIPAS instrument on board the Environmental Satellite (Envisat) during 2002 to 2012. Monitoring of these gases is of scientific interest because both of them are strong greenhouse gases. We analyze the latest, improved version of calibrated MIPAS measurements. Further, we apply a new retrieval scheme leading to an improved CH4 and N2O data product .
Matthieu Dogniaux, Joannes D. Maasakkers, Daniel J. Varon, and Ilse Aben
Atmos. Meas. Tech., 17, 2777–2787, https://doi.org/10.5194/amt-17-2777-2024, https://doi.org/10.5194/amt-17-2777-2024, 2024
Short summary
Short summary
We analyze Landsat 8 (L8) and Sentinel-2B (S-2B) observations of the 2022 Nord Stream 2 methane leak and show how challenging this case is for usual data analysis methods. We provide customized calibrations for this Nord Stream 2 case and assess that no firm conclusion can be drawn from L8 or S-2B single overpasses. However, if we opportunistically assume that L8 and S-2B results are independent, we find an averaged L8 and S-2B combined methane leak rate of 502 ± 464 t h−1.
Jack H. Bruno, Dylan Jervis, Daniel J. Varon, and Daniel J. Jacob
Atmos. Meas. Tech., 17, 2625–2636, https://doi.org/10.5194/amt-17-2625-2024, https://doi.org/10.5194/amt-17-2625-2024, 2024
Short summary
Short summary
Methane is a potent greenhouse gas and a current high-priority target for short- to mid-term climate change mitigation. Detection of individual methane emitters from space has become possible in recent years, and the volume of data for this task has been rapidly growing, outpacing processing capabilities. We introduce an automated approach, U-Plume, which can detect and quantify emissions from individual methane sources in high-spatial-resolution satellite data.
Anna Vaughan, Gonzalo Mateo-García, Luis Gómez-Chova, Vít Růžička, Luis Guanter, and Itziar Irakulis-Loitxate
Atmos. Meas. Tech., 17, 2583–2593, https://doi.org/10.5194/amt-17-2583-2024, https://doi.org/10.5194/amt-17-2583-2024, 2024
Short summary
Short summary
Methane is a potent greenhouse gas that has been responsible for around 25 % of global warming since the industrial revolution. Consequently identifying and mitigating methane emissions comprise an important step in combating the climate crisis. We develop a new deep learning model to automatically detect methane plumes from satellite images and demonstrate that this can be applied to monitor large methane emissions resulting from the oil and gas industry.
Otto M. Lamminpää, Jouni I. Susiluoto, Jonathan M. Hobbs, James L. McDuffie, Amy J. Braverman, and Houman Owhadi
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-63, https://doi.org/10.5194/amt-2024-63, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
We develop and demonstrate a fast forward function emulator for remote sensing of greenhouse gases. These forward functions are computationally expensive to evaluate, and as such the key challenge for many satellite missions in their data processing is the time used in these evaluations. Our method is fast and accurate enough, less than 1 % relative error, so that it could be safely used in operational processing.
Stefan Noël, Michael Buchwitz, Michael Hilker, Maximilian Reuter, Michael Weimer, Heinrich Bovensmann, John P. Burrows, Hartmut Bösch, and Ruediger Lang
Atmos. Meas. Tech., 17, 2317–2334, https://doi.org/10.5194/amt-17-2317-2024, https://doi.org/10.5194/amt-17-2317-2024, 2024
Short summary
Short summary
FOCAL-CO2M is one of the three operational retrieval algorithms which will be used to derive XCO2 and XCH4 from measurements of the forthcoming European CO2M mission. We present results of applications of FOCAL-CO2M to simulated spectra, from which confidence is gained that the algorithm is able to fulfil the challenging requirements on systematic errors for the CO2M mission (spatio-temporal bias ≤ 0.5 ppm for XCO2 and ≤ 5 ppb for XCH4).
Marvin Knapp, Ralph Kleinschek, Sanam N. Vardag, Felix Külheim, Helge Haveresch, Moritz Sindram, Tim Siegel, Bruno Burger, and André Butz
Atmos. Meas. Tech., 17, 2257–2275, https://doi.org/10.5194/amt-17-2257-2024, https://doi.org/10.5194/amt-17-2257-2024, 2024
Short summary
Short summary
Imaging carbon dioxide (CO2) plumes of anthropogenic sources from planes and satellites has proven valuable for detecting emitters and monitoring climate mitigation efforts. We present the first images of CO2 plumes taken with a ground-based spectral camera, observing a coal-fired power plant as a validation target. We develop a technique to find the source emission strength with an hourly resolution, which reasonably agrees with the expected emissions under favorable conditions.
Karl Voglmeier, Voltaire A. Velazco, Luca Egli, Julian Gröbner, Alberto Redondas, and Wolfgang Steinbrecht
Atmos. Meas. Tech., 17, 2277–2294, https://doi.org/10.5194/amt-17-2277-2024, https://doi.org/10.5194/amt-17-2277-2024, 2024
Short summary
Short summary
Comparison between total ozone column (TOC) measurements from ground-based Dobson and Brewer spectrophotometers generally reveals seasonally varying differences of a few percent. This study recommends a new TOC retrieval approach, which effectively eliminates these seasonally varying differences by applying new ozone absorption cross sections, appropriate slit functions for the Dobson instrument, and climatological values for the effective ozone temperature.
Richard Eastes, J. Scott Evans, Quan Gan, Bill McClintock, and Jerry Lumpe
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-52, https://doi.org/10.5194/amt-2024-52, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
The temperature is essential to understanding the thermosphere. Most temperature measurements have indirect or had large uncertainties, especially in the lower-middle thermosphere where data are rarely available. Since October 2018 NASA’s GOLD mission has produced disk images of neutral temperatures near 160 km at locations over the Americas and Atlantic Ocean. This paper discusses both temperature retrieval techniques and issues in interpreting GOLD’s images of temperatures.
Wenfu Tang, Benjamin Gaubert, Louisa Emmons, Daniel Ziskin, Debbie Mao, David Edwards, Avelino Arellano, Kevin Raeder, Jeffrey Anderson, and Helen Worden
Atmos. Meas. Tech., 17, 1941–1963, https://doi.org/10.5194/amt-17-1941-2024, https://doi.org/10.5194/amt-17-1941-2024, 2024
Short summary
Short summary
We assimilate different MOPITT CO products to understand the impact of (1) assimilating multispectral and joint retrievals versus single spectral products, (2) assimilating satellite profile products versus column products, and (3) assimilating multispectral and joint retrievals versus assimilating individual products separately.
Juseon Bak, Xiong Liu, Kai Yang, Gonzalo Gonzalez Abad, Ewan O'Sullivan, Kelly Chance, and Cheol-Hee Kim
Atmos. Meas. Tech., 17, 1891–1911, https://doi.org/10.5194/amt-17-1891-2024, https://doi.org/10.5194/amt-17-1891-2024, 2024
Short summary
Short summary
The new version (V2) of the OMI ozone profile product is introduced to improve retrieval quality and long-term consistency of tropospheric ozone by incorporating the recent collection 4 OMI L1b spectral products and refining radiometric correction, forward model calculation, and a priori ozone data.
Andrea Orfanoz-Cheuquelaf, Carlo Arosio, Alexei Rozanov, Mark Weber, Annette Ladstätter-Weißenmayer, John P. Burrows, Anne M. Thompson, Ryan M. Stauffer, and Debra E. Kollonige
Atmos. Meas. Tech., 17, 1791–1809, https://doi.org/10.5194/amt-17-1791-2024, https://doi.org/10.5194/amt-17-1791-2024, 2024
Short summary
Short summary
Valuable information on the tropospheric ozone column (TrOC) can be obtained globally by combining space-borne limb and nadir measurements (limb–nadir matching, LNM). This study describes the retrieval of TrOC from the OMPS instrument (since 2012) using the LNM technique. The OMPS-LNM TrOC was compared with ozonesondes and other satellite measurements, showing a good agreement with a negative bias within 1 to 4 DU. This new dataset is suitable for pollution studies.
Gabriele P. Stiller, Thomas von Clarmann, Norbert Glatthor, Udo Grabowski, Sylvia Kellmann, Michael Kiefer, Alexandra Laeng, Andrea Linden, Bernd Funke, Maya García-Comas, and Manuel López-Puertas
Atmos. Meas. Tech., 17, 1759–1789, https://doi.org/10.5194/amt-17-1759-2024, https://doi.org/10.5194/amt-17-1759-2024, 2024
Short summary
Short summary
CFC-11, CFC-12, and HCFC-22 contribute to the depletion of ozone and are potent greenhouse gases. They have been banned by the Montreal protocol. With MIPAS on Envisat the atmospheric composition could be observed between 2002 and 2012. We present here the retrieval of their atmospheric distributions for the final data version 8. We characterise the derived data by their error budget and their spatial resolution. An additional representation for direct comparison to models is also provided.
Nicole Jacobs, Christopher W. O'Dell, Thomas E. Taylor, Thomas L. Logan, Brendan Byrne, Matthäus Kiel, Rigel Kivi, Pauli Heikkinen, Aronne Merrelli, Vivienne H. Payne, and Abhishek Chatterjee
Atmos. Meas. Tech., 17, 1375–1401, https://doi.org/10.5194/amt-17-1375-2024, https://doi.org/10.5194/amt-17-1375-2024, 2024
Short summary
Short summary
The accuracy of trace gas retrievals from spaceborne observations, like those from the Orbiting Carbon Observatory 2 (OCO-2), are sensitive to the referenced digital elevation model (DEM). Therefore, we evaluate several global DEMs, used in versions 10 and 11 of the OCO-2 retrieval along with the Copernicus DEM. We explore the impacts of changing the DEM on biases in OCO-2-retrieved XCO2 and inferred CO2 fluxes. Our findings led to an update to OCO-2 v11.1 using the Copernicus DEM globally.
Eamon K. Conway, Amir H. Souri, Joshua Benmergui, Kang Sun, Xiong Liu, Carly Staebell, Christopher Chan Miller, Jonathan Franklin, Jenna Samra, Jonas Wilzewski, Sebastien Roche, Bingkun Luo, Apisada Chulakadabba, Maryann Sargent, Jacob Hohl, Bruce Daube, Iouli Gordon, Kelly Chance, and Steven Wofsy
Atmos. Meas. Tech., 17, 1347–1362, https://doi.org/10.5194/amt-17-1347-2024, https://doi.org/10.5194/amt-17-1347-2024, 2024
Short summary
Short summary
The work presented here describes the processes required to convert raw sensor data for the MethaneAIR instrument to geometrically calibrated data. Each algorithm is described in detail. MethaneAIR is the airborne simulator for MethaneSAT, a new satellite under development by MethaneSAT LLC, a subsidiary of the EDF. MethaneSAT's goals are to precisely map over 80 % of the production sources of methane emissions from oil and gas fields across the globe to a high degree of accuracy.
Javier Roger, Luis Guanter, Javier Gorroño, and Itziar Irakulis-Loitxate
Atmos. Meas. Tech., 17, 1333–1346, https://doi.org/10.5194/amt-17-1333-2024, https://doi.org/10.5194/amt-17-1333-2024, 2024
Short summary
Short summary
Methane emissions can be identified using remote sensing, but surface-related structures disturb detection. In this work, a variation of the matched filter method that exploits a large fraction of the near-infrared range (1000–2500 nm) is applied. In comparison to the raw matched filter, it reduces background noise and strongly attenuates the surface-related artifacts, which leads to a greater detection capability. We propose this variation as a standard methodology for methane detection.
Blanca Fuentes Andrade, Michael Buchwitz, Maximilian Reuter, Heinrich Bovensmann, Andreas Richter, Hartmut Boesch, and John P. Burrows
Atmos. Meas. Tech., 17, 1145–1173, https://doi.org/10.5194/amt-17-1145-2024, https://doi.org/10.5194/amt-17-1145-2024, 2024
Short summary
Short summary
We developed a method to estimate CO2 emissions from localized sources, such as power plants, using satellite data and applied it to estimate CO2 emissions from the Bełchatów Power Station (Poland). As the detection of CO2 emission plumes from satellite data is difficult, we used observations of co-emitted NO2 to constrain the emission plume region. Our results agree with CO2 emission estimations based on the power-plant-generated power and emission factors.
Gregory R. McGarragh, Christopher W. O'Dell, Sean M. R. Crowell, Peter Somkuti, Eric B. Burgh, and Berrien Moore III
Atmos. Meas. Tech., 17, 1091–1121, https://doi.org/10.5194/amt-17-1091-2024, https://doi.org/10.5194/amt-17-1091-2024, 2024
Short summary
Short summary
Carbon dioxide and methane are greenhouse gases that have been rapidly increasing due to human activity since the industrial revolution, leading to global warming and subsequently negative affects on the climate. It is important to measure the concentrations of these gases in order to make climate predictions that drive policy changes to mitigate climate change. GeoCarb aims to measure the concentrations of these gases from space over the Americas at unprecedented spatial and temporal scales.
Jianping Mao, James B. Abshire, S. Randy Kawa, Xiaoli Sun, and Haris Riris
Atmos. Meas. Tech., 17, 1061–1074, https://doi.org/10.5194/amt-17-1061-2024, https://doi.org/10.5194/amt-17-1061-2024, 2024
Short summary
Short summary
NASA Goddard Space Flight Center has developed an integrated-path, differential absorption lidar approach to measure column-averaged atmospheric CO2 (XCO2). We demonstrated the lidar’s capability to measure XCO2 to cloud tops ,as well as to the ground, with the data from the summer 2017 airborne campaign in the US and Canada. This active remote sensing technique can provide all-sky data coverage and high-quality XCO2 measurements for future airborne science campaigns and space missions.
Jong-Uk Park, Hyun-Jae Kim, Jin-Soo Park, Jinsoo Choi, Sang Seo Park, Kangho Bae, Jong-Jae Lee, Chang-Keun Song, Soojin Park, Kyuseok Shim, Yeonsoo Cho, and Sang-Woo Kim
Atmos. Meas. Tech., 17, 197–217, https://doi.org/10.5194/amt-17-197-2024, https://doi.org/10.5194/amt-17-197-2024, 2024
Short summary
Short summary
The high-spatial-resolution NO2 vertical column densities (VCDs) were measured from airborne observations using the low-cost hyperspectral imaging sensor (HIS) at three industrial areas in South Korea with the newly developed versatile NO2 VCD retrieval algorithm apt to be applied to the instruments with volatile optical and radiometric properties. The airborne HIS observations emphasized the intensifying satellite sub-grid variability in NO2 VCDs near the emission sources.
Yiguo Pang, Longfei Tian, Denghui Hu, Shuang Gao, and Guohua Liu
EGUsphere, https://doi.org/10.5194/egusphere-2023-1693, https://doi.org/10.5194/egusphere-2023-1693, 2023
Short summary
Short summary
The spatial adjacency of methane point sources can result in plume overlapping, presenting challenges for the quantification from space. A modern parameter estimation technique is introduced to separate the overlapping plumes from satellite observations. This separation method allows traditional quantification methods to be applied beyond scenarios with a single source. A new optimization metric is also proposed for better separation of relatively weaker sources.
William R. Keely, Steffen Mauceri, Sean Crowell, and Christopher W. O'Dell
Atmos. Meas. Tech., 16, 5725–5748, https://doi.org/10.5194/amt-16-5725-2023, https://doi.org/10.5194/amt-16-5725-2023, 2023
Short summary
Short summary
Measurement errors in satellite observations of CO2 attributed to co-estimated atmospheric variables are corrected using a linear regression on quality-filtered data. We propose a nonlinear method that improves correction against a set of ground truth proxies and allows for high throughput of well-corrected data.
Manuel López-Puertas, Maya García-Comas, Bernd Funke, Thomas von Clarmann, Norbert Glatthor, Udo Grabowski, Sylvia Kellmann, Michael Kiefer, Alexandra Laeng, Andrea Linden, and Gabriele P. Stiller
Atmos. Meas. Tech., 16, 5609–5645, https://doi.org/10.5194/amt-16-5609-2023, https://doi.org/10.5194/amt-16-5609-2023, 2023
Short summary
Short summary
This paper describes a new version (V8) of ozone data from MIPAS middle-atmosphere spectra. The dataset comprises high-quality ozone profiles from 20 to 100 km, with pole-to-pole latitude coverage for the day- and nighttime, spanning 2005 until 2012. An exhaustive treatment of errors has been performed. Compared to other satellite instruments, MIPAS ozone shows a positive bias of 5 %–8 % below 70 km. In the upper mesosphere, this new version agrees much better than previous ones (within 10 %).
Cited articles
Ayuntamiento de Madrid (AM): Madrid 2016 Annual Air Quality Assessment
Report (Calidad del aire Madrid 2019), General Directorate of Sustainability
and Environmental Control, Madrid City Council Available online, only
Spanish version, available at: http://www.mambiente.munimadrid.es/opencms/calaire/Publicaciones/memoria_2019.html (last access: April 2020), 2019.
Benavent, N., Garcia-Nieto, D., Wang, S., and Saiz-Lopez, A.: MAX-DOAS
measurements and vertical profiles of glyoxal and formaldehyde in Madrid,
Spain, Atmos. Environ., 199, 357–367, 2019.
Borge, R., Narros, A., Artínano, B., Yagüe, C., Gómez-Moreno, F. J., Paz, D. d. l., Román-Cascón, C., Díaz, E., Maqueda, G., Sastre, M., and Quaassdorff, C., Dimitroulopoulou, C., Vardoulakis, S.: Assessment
of micro-scale spatio-temporal variation of air pollution at an urban
hotspot in Madrid (Spain) through an extensive field campaign, Atmos.
Environ., 140, 432–445, 2016.
Borge, R., Santiago, J. L., de la Paz, D., Martín, F., Domingo, J.,
Valdés, C., Sánchez, B., Rivas, E., Rozas, M. T., Lázaro, S.,
Pérez, J., and Fernández, Á.: Application of a short term air
quality action plan in Madrid (Spain) under a high-pollution episode – Part
II: Assessment from multi-scale modelling, Sci. Total Environ.,
635, 1574–1584, https://doi.org/10.1016/j.scitotenv.2018.04.323, 2018.
Carnerero, C., Pérez, N., Reche, C., Ealo, M., Titos, G., Lee, H.-K., Eun, H.-R., Park, Y.-H., Dada, L., Paasonen, P., Kerminen, V.-M., Mantilla, E., Escudero, M., Gómez-Moreno, F. J., Alonso-Blanco, E., Coz, E., Saiz-Lopez, A., Temime-Roussel, B., Marchand, N., Beddows, D. C. S., Harrison, R. M., Petäjä, T., Kulmala, M., Ahn, K.-H., Alastuey, A., and Querol, X.: Vertical and horizontal distribution of regional new particle formation events in Madrid, Atmos. Chem. Phys., 18, 16601–16618, https://doi.org/10.5194/acp-18-16601-2018, 2018.
Chan, K. L., Wiegner, M., van Geffen, J., De Smedt, I., Alberti, C., Cheng, Z., Ye, S., and Wenig, M.: MAX-DOAS measurements of tropospheric NO2 and HCHO in Munich and the comparison to OMI and TROPOMI satellite observations, Atmos. Meas. Tech., 13, 4499–4520, https://doi.org/10.5194/amt-13-4499-2020, 2020.
Chance, K. and Kurucz, R. L.: An improved high-resolution solar reference
spectrum for earth's atmosphere measurements in the ultraviolet, visible,
and near infrared, Special Issue
Dedicated to Laurence S. Rothman on the Occasion of his 70th Birthday 111, J. Quant. Spectrosc. Ra.,
9, 1289–1295, 2010.
Clémer, K., Van Roozendael, M., Fayt, C., Hendrick, F., Hermans, C., Pinardi, G., Spurr, R., Wang, P., and De Mazière, M.: Multiple wavelength retrieval of tropospheric aerosol optical properties from MAXDOAS measurements in Beijing, Atmos. Meas. Tech., 3, 863–878, https://doi.org/10.5194/amt-3-863-2010, 2010.
Cuevas, C., Notario, A., Adame, J., Hilboll, A., Richter, A., Burrows, J. P,
and Saiz-Lopez, A.: Evolution of NO2 levels in Spain from 1996 to 2012, Sci. Rep., 4, 5887, https://doi.org/10.1038/srep05887, 2014.
Danckaert, T., Fayt, C., Van Roozendael, M., De Smedt, I., Letocart, V., Merlaud, A., and Pinardi, G.: QDOAS Software user manual, Belgian Institute for Space Aeronomy, available at: https://uv-vis.aeronomie.be/software/QDOAS/QDOAS_manual.pdf, last access: 2 September 2017.
de la Paz, D., Borge, R., and Martilli, A.: Assessment of a high resolution
annual WRF-BEP/CMAQ simulation for the urban area of Madrid (Spain),
Atmos. Environ., 144, 282–296, https://doi.org/10.1016/j.atmosenv.2016.08.082, 2016.
Dimitropoulou, E., Hendrick, F., Pinardi, G., Friedrich, M. M., Merlaud, A., Tack, F., De Longueville, H., Fayt, C., Hermans, C., Laffineur, Q., Fierens, F., and Van Roozendael, M.: Validation of TROPOMI tropospheric NO2 columns using dual-scan multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements in Uccle, Brussels, Atmos. Meas. Tech., 13, 5165–5191, https://doi.org/10.5194/amt-13-5165-2020, 2020.
European Environment Agency (EEA): Air quality in Europe – 2019 report,
EEA Technical Report No 10/2019, ISBN: 978-92-9480-088-6, available at: https://www.eea.europa.eu/publications/air-quality-in-europe-2019 (last access: May 2020), 2019.
Hendrick, F., Müller, J.-F., Clémer, K., Wang, P., De Mazière, M., Fayt, C., Gielen, C., Hermans, C., Ma, J. Z., Pinardi, G., Stavrakou, T., Vlemmix, T., and Van Roozendael, M.: Four years of ground-based MAX-DOAS observations of HONO and NO2 in the Beijing area, Atmos. Chem. Phys., 14, 765–781, https://doi.org/10.5194/acp-14-765-2014, 2014.
Garcia-Nieto, D., Benavent, N., and Saiz-Lopez, A.: Measurements of atmospheric
HONO vertical distribution and temporal evolution in Madrid (Spain) using
the MAXDOAS technique, Sci. Total Environ., 643, 957–966,
2018.
Gorshelev, V., Serdyuchenko, A., Weber, M., Chehade, W., and Burrows, J. P.: High spectral resolution ozone absorption cross-sections – Part 1: Measurements, data analysis and comparison with previous measurements around 293 K, Atmos. Meas. Tech., 7, 609–624, https://doi.org/10.5194/amt-7-609-2014, 2014.
Hönninger, G., von Friedeburg, C., and Platt, U.: Multi axis differential optical absorption spectroscopy (MAX-DOAS), Atmos. Chem. Phys., 4, 231–254, https://doi.org/10.5194/acp-4-231-2004, 2004.
Izquierdo, R., García Dos Santos, S., Borge, R., Paz, D. de la,
Sarigiannis, D., Gotti, A., and Boldo, E.: Health impact assessment by the
implementation of Madrid City air-quality plan in 2020, Environ. Res., 183, 109021, https://doi.org/10.1016/j.envres.2019.109021, 2020.
Kramer, L. J., Leigh, R. J., Remedios, J. J., and Monks, P. S: Comparison
of OMI and ground-based in situ and MAX-DOAS measurements of tropospheric
nitrogen dioxide in an urban area, J. Geophys. Res.-Atmos., 113, D16S39, https://doi.org/10.1029/2007JD009168, 2008.
Meller, R. and Moortgat, G. K.: Temperature dependence of the absorption cross
sections of formaldehyde between 223 and 323 K in the wavelength range
225–375 nm, J. Geophys. Res.-Atmos., 105, 7089–7101,
2000.
Monks, P. S., Granier, C., Fuzzi, S., Stohl, A., Williams, M. L., Akimoto,
H., Amann, M.,Baklanov, A., Baltensperger, U., Bey, I., Blake, N., Blake, R.
S., Carslaw, K., Cooper, O. R., Dentener, F., Fowler, D., Fragkou, E.,
Frost, G. J., Generoso, S., and von Glasow, R.: Atmospheric
composition change – global and regional air quality, Atmos. Environ., 43, 5268–5350,
https://doi.org/10.1016/j.atmosenv.2009.08.021, 2009.
Ortega, I., Coburn, S., Berg, L. K., Lantz, K., Michalsky, J., Ferrare, R. A., Hair, J. W., Hostetler, C. A., and Volkamer, R.: The CU 2-D-MAX-DOAS instrument – Part 2: Raman scattering probability measurements and retrieval of aerosol optical properties, Atmos. Meas. Tech., 9, 3893–3910, https://doi.org/10.5194/amt-9-3893-2016, 2016.
Peters, E., Wittrock, F., Großmann, K., Frieß, U., Richter, A., and Burrows, J. P.: Formaldehyde and nitrogen dioxide over the remote western Pacific Ocean: SCIAMACHY and GOME-2 validation using ship-based MAX-DOAS observations, Atmos. Chem. Phys., 12, 11179–11197, https://doi.org/10.5194/acp-12-11179-2012, 2012.
Picornell, M., Ruiz, T., Borge, R., García-Albertos, P., de la Paz, D., and Lumbreras, J.: Population dynamics based on
mobile phone data to improve air pollution exposure assessments, J. Expo. Sci.
Environ. Epidemiol., 29, 278–291, https://doi.org/10.1038/s41370-018-0058-5,
2019.
Plane, J. M. C. and Saiz-Lopez, A.: UV-Visible Differential Optical Absorption
Spectroscopy (DOAS), in: Analytical Techniques for
Atmospheric Measurement, edited by: Heard, D. E., Blackwell Publishing, Oxford, 553 pp., 2006.
Platt, U. and Stutz, J.: Differential Optical Absorption Spectroscopy:
Principles and Applications, Springer Berlin Heidelberg, Berlin, Heidelberg, 608 pp., 2008.
Quaassdorff, C., Borge, R., Pérez, J., Lumbreras, J., de la Paz, D., and de Andrés, J. M.: Microscale traffic simulation and emission estimation in a heavily
trafficked roundabout in Madrid (Spain), Sci. Total Environ., 566, 416–427,
https://doi.org/10.1016/j.scitotenv.2016.05.051, 2016.
Rodgers, C. D.: Inverse Methods for Atmospheric Sounding: Theory and
Practice, World Scientific Publishing, Singapore, 256 pp., 2000.
Rothman, L. S., Gordon, I. E., Barber, R. J., Dothe, H., Gamache, R. R.,
Goldman, A., Perevalov, V. L., Tashkum, S. A., and Tennyson, J.: HITEMP, the
high-temperature molecular spectroscopic database, J. Quant. Spectrosc. Ra. 111, 2139, https://doi.org/10.1016/j.jqsrt.2010.05.001, 2010.
Ryan, R. G., Rhodes, S., Tully, M., Wilson, S., Jones, N., Frieß, U., and Schofield, R.: Daytime HONO, NO2 and aerosol distributions from MAX-DOAS observations in Melbourne, Atmos. Chem. Phys., 18, 13969–13985, https://doi.org/10.5194/acp-18-13969-2018, 2018.
Saiz-Lopez, A., Borge, R., Notario, A., Adame, J. A., Paz, D., Querol, X., Artíñano, B., Gómez-Moreno, F. J., and Cuevas, C. A.: Unexpected increase in the
oxidation capacity of the urban atmosphere of Madrid, Spain, Sci. Rep., 7,
45956, https://doi.org/10.1038/srep45956, 2017.
Schreier, S. F., Richter, A., Peters, E., Ostendorf, M., Schmalwieser, A.
W., Weihs, P., and Burrows, J. P: Dual ground-based MAX-DOAS observations
in Vienna, Austria: Evaluation of horizontal and temporal NO2, HCHO, and
CHOCHO distributions and comparison with independent data sets, Atmos. Environ., 5, https://doi.org/10.1016/j.aeaoa.2019.100059, 2020.
Solomon, S., Sanders, R. W., and Schmeltekopf, A. L.: On the
Interpretation of Zenith Sky Absorption Measurements, J. Geophys.
Res., 92, 8311–8319, 1987.
Stutz, J., Kim, E. S., Platt, U., Bruno, P., Perrino, C., and Febo, A.:
UV-visible absorption cross sections of nitrous acid, J. Geophys. Res.-Atmos., 105, 14585–14592, 2000.
Thalman, R. and Volkamer, R.: Temperature dependent absorption cross-sections
of O2-O2 collision pairs between 340 and 630 nm and at atmospherically
relevant pressure, Phys. Chem. Chem. Phys., 15, 15371–15381,
2013.
Vandaele, A. C., Hermans, C., Simon, P. C., Carleer, M., Colin, R., Fally, S.,
Mérienne, M. F., Jenouvrier, A., and Coquart, B.: Measurements of the NO2
absorption cross-section from 42 000 cm−1 to 10 000 cm−2 (238–1000 nm) at 220 K and 294 K,
J. Quant. Spectrosc. Ra., 59, 171–184, 1998.
Volkamer, R., Spietz, P., Burrows, J., and Platt, U.: High-resolution absorption
cross-section of glyoxal in the UV-vis and IR spectral ranges, J. Photochem.
Photobiol. Chem., 172, 35–46, 2005.
Wagner, T., Beirle, S., Benavent, N., Bösch, T., Chan, K. L., Donner, S., Dörner, S., Fayt, C., Frieß, U., García-Nieto, D., Gielen, C., González-Bartolome, D., Gomez, L., Hendrick, F., Henzing, B., Jin, J. L., Lampel, J., Ma, J., Mies, K., Navarro, M., Peters, E., Pinardi, G., Puentedura, O., Puķıte, J., Remmers, J., Richter, A., Saiz-Lopez, A., Shaiganfar, R., Sihler, H., Van Roozendael, M., Wang, Y., and Yela, M.: Is a scaling factor required to obtain closure between measured and modelled atmospheric O4 absorptions? An assessment of uncertainties of measurements and radiative transfer simulations for 2 selected days during the MAD-CAT campaign, Atmos. Meas. Tech., 12, 2745–2817, https://doi.org/10.5194/amt-12-2745-2019, 2019.
Wang, S., Cuevas, C. A., Frieß, U., and Saiz-Lopez, A.: MAX-DOAS retrieval of aerosol extinction properties in Madrid, Spain, Atmos. Meas. Tech., 9, 5089–5101, https://doi.org/10.5194/amt-9-5089-2016, 2016.
World Health Statistics (WHO): monitoring health for the SDGs, Wold Health
Organization, available at: https://apps.who.int/iris/handle/10665/324835 (last access: May 2020), 2019.
Yang, T., Si, F., Luo, Y., Zhan, K., Wang, P., Zhou, H., Zhao, M., and Liu,
W.: Source contribution analysis of tropospheric NO2 based on
two-dimensional MAX-DOAS measurements, Atmos. Environ., 210, 186–197, 2019.
Short summary
Trace gases play a key role in the chemistry of urban atmospheres. Therefore, knowledge about their spatial distribution is needed to fully characterize the air quality in urban areas. Using a new Multi-AXis Differential Optical Absorption Spectroscopy two-dimensional (MAXDOAS-2D) instrument, along with inversion algorithms, we report for the first time two-dimensional maps of NO2 concentrations in the city of Madrid, Spain.
Trace gases play a key role in the chemistry of urban atmospheres. Therefore, knowledge about...