Articles | Volume 14, issue 6
https://doi.org/10.5194/amt-14-4335-2021
https://doi.org/10.5194/amt-14-4335-2021
Research article
 | 
11 Jun 2021
Research article |  | 11 Jun 2021

Deriving boundary layer height from aerosol lidar using machine learning: KABL and ADABL algorithms

Thomas Rieutord, Sylvain Aubert, and Tiago Machado

Viewed

Total article views: 3,618 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
2,600 915 103 3,618 113 167
  • HTML: 2,600
  • PDF: 915
  • XML: 103
  • Total: 3,618
  • BibTeX: 113
  • EndNote: 167
Views and downloads (calculated since 07 Apr 2020)
Cumulative views and downloads (calculated since 07 Apr 2020)

Viewed (geographical distribution)

Total article views: 3,618 (including HTML, PDF, and XML) Thereof 3,422 with geography defined and 196 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 08 Nov 2025
Download
Short summary
This article describes two methods to estimate the height of the very first layer of the atmosphere. It is measured with aerosol lidars, and the two new methods are based on machine learning. Both are open source and available under free licenses. A sensitivity analysis and a 2-year evaluation against meteorological balloons were carried out. One method has a good agreement with balloons but is limited by training, and the other has less good agreement with balloons but is more flexible.
Share