Articles | Volume 14, issue 6
https://doi.org/10.5194/amt-14-4335-2021
https://doi.org/10.5194/amt-14-4335-2021
Research article
 | 
11 Jun 2021
Research article |  | 11 Jun 2021

Deriving boundary layer height from aerosol lidar using machine learning: KABL and ADABL algorithms

Thomas Rieutord, Sylvain Aubert, and Tiago Machado

Viewed

Total article views: 3,103 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
2,210 810 83 3,103 85 122
  • HTML: 2,210
  • PDF: 810
  • XML: 83
  • Total: 3,103
  • BibTeX: 85
  • EndNote: 122
Views and downloads (calculated since 07 Apr 2020)
Cumulative views and downloads (calculated since 07 Apr 2020)

Viewed (geographical distribution)

Total article views: 3,103 (including HTML, PDF, and XML) Thereof 2,919 with geography defined and 184 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 11 Mar 2025
Download
Short summary
This article describes two methods to estimate the height of the very first layer of the atmosphere. It is measured with aerosol lidars, and the two new methods are based on machine learning. Both are open source and available under free licenses. A sensitivity analysis and a 2-year evaluation against meteorological balloons were carried out. One method has a good agreement with balloons but is limited by training, and the other has less good agreement with balloons but is more flexible.
Share