Articles | Volume 14, issue 9
https://doi.org/10.5194/amt-14-6119-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-6119-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An algorithm to detect non-background signals in greenhouse gas time series from European tall tower and mountain stations
Alex Resovsky
CORRESPONDING AUTHOR
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
Michel Ramonet
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
Leonard Rivier
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
Jerome Tarniewicz
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
Philippe Ciais
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
Martin Steinbacher
Laboratory for Air Pollution/Environmental Technology, Empa, 8600
Duebendorf, Switzerland
Ivan Mammarella
Institute for Atmospheric and Earth System Research,
University of Helsinki, Helsinki, Finland
Meelis Mölder
Department of Physical Geography and Ecosystem Science, Lund University, 22100 Lund, Sweden
Michal Heliasz
Department of Physical Geography and Ecosystem Science, Lund University, 22100 Lund, Sweden
Dagmar Kubistin
Meteorological Observatory Hohenpeissenberg, Deutscher Wetterdienst, 82383 Hohenpeissenberg, Germany
Matthias Lindauer
Meteorological Observatory Hohenpeissenberg, Deutscher Wetterdienst, 82383 Hohenpeissenberg, Germany
Jennifer Müller-Williams
Meteorological Observatory Hohenpeissenberg, Deutscher Wetterdienst, 82383 Hohenpeissenberg, Germany
Sebastien Conil
DRD/OPE, Andra, Bure, 55290, France
Richard Engelen
European Center for Medium-Range Weather Forecasts, Shinfield Park,
Reading, UK
Viewed
Total article views: 3,090 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 09 Mar 2021)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,942 | 1,043 | 105 | 3,090 | 116 | 130 |
- HTML: 1,942
- PDF: 1,043
- XML: 105
- Total: 3,090
- BibTeX: 116
- EndNote: 130
Total article views: 2,083 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 17 Sep 2021)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,449 | 543 | 91 | 2,083 | 109 | 118 |
- HTML: 1,449
- PDF: 543
- XML: 91
- Total: 2,083
- BibTeX: 109
- EndNote: 118
Total article views: 1,007 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 09 Mar 2021)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
493 | 500 | 14 | 1,007 | 7 | 12 |
- HTML: 493
- PDF: 500
- XML: 14
- Total: 1,007
- BibTeX: 7
- EndNote: 12
Viewed (geographical distribution)
Total article views: 3,090 (including HTML, PDF, and XML)
Thereof 2,998 with geography defined
and 92 with unknown origin.
Total article views: 2,083 (including HTML, PDF, and XML)
Thereof 2,055 with geography defined
and 28 with unknown origin.
Total article views: 1,007 (including HTML, PDF, and XML)
Thereof 943 with geography defined
and 64 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
6 citations as recorded by crossref.
- COCCON Measurements of XCO2, XCH4 and XCO over Coal Mine Aggregation Areas in Shanxi, China, and Comparison to TROPOMI and CAMS Datasets Q. Tu et al. 10.3390/rs16214022
- Methodology for selecting near-surface CH4, CO, and CO2 observations reflecting atmospheric background conditions at the WMO/GAW station in Lamezia Terme, Italy L. Malacaria et al. 10.1016/j.apr.2025.102515
- Long-term observations of atmospheric CO2 and CH4 trends and comparison of two measurement systems at Pallas-Sammaltunturi station in Northern Finland A. Laitinen et al. 10.5194/amt-18-3109-2025
- Multi-decadal atmospheric carbon dioxide measurements in Hungary, central Europe L. Haszpra 10.5194/amt-17-4629-2024
- How to trace the origins of short-lived atmospheric species: an Arctic example A. Da Silva et al. 10.5194/acp-25-5331-2025
- Methane Variability in the Surface Atmospheric Layer at a Background Forest Station in the Prioksko-Terrasny Reserve A. Trifonova-Yakovleva et al. 10.3103/S106837392211005X
6 citations as recorded by crossref.
- COCCON Measurements of XCO2, XCH4 and XCO over Coal Mine Aggregation Areas in Shanxi, China, and Comparison to TROPOMI and CAMS Datasets Q. Tu et al. 10.3390/rs16214022
- Methodology for selecting near-surface CH4, CO, and CO2 observations reflecting atmospheric background conditions at the WMO/GAW station in Lamezia Terme, Italy L. Malacaria et al. 10.1016/j.apr.2025.102515
- Long-term observations of atmospheric CO2 and CH4 trends and comparison of two measurement systems at Pallas-Sammaltunturi station in Northern Finland A. Laitinen et al. 10.5194/amt-18-3109-2025
- Multi-decadal atmospheric carbon dioxide measurements in Hungary, central Europe L. Haszpra 10.5194/amt-17-4629-2024
- How to trace the origins of short-lived atmospheric species: an Arctic example A. Da Silva et al. 10.5194/acp-25-5331-2025
- Methane Variability in the Surface Atmospheric Layer at a Background Forest Station in the Prioksko-Terrasny Reserve A. Trifonova-Yakovleva et al. 10.3103/S106837392211005X
Latest update: 23 Aug 2025
Short summary
We present a technical description of a statistical methodology for extracting synoptic- and seasonal-length anomalies from greenhouse gas time series. The definition of what represents an anomalous signal is somewhat subjective, which we touch on throughout the paper. We show, however, that the method performs reasonably well in extracting portions of time series influenced by significant North Atlantic Oscillation weather episodes and continent-wide terrestrial biospheric aberrations.
We present a technical description of a statistical methodology for extracting synoptic- and...