Articles | Volume 15, issue 8
https://doi.org/10.5194/amt-15-2361-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-2361-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ground-based Ku-band microwave observations of ozone in the polar middle atmosphere
British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
Mark A. Clilverd
British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
William D. J. Clark
British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
Michael Kosch
Physics Department, Lancaster University, Lancaster, LA1 4YB, UK
South African National Space Agency (SANSA), Hospital Street, Hermanus 7200, South Africa
Department of Physics and Astronomy, University of the Western Cape, Robert Sobukwe Road, Bellville, 7535, South Africa
Pekka T. Verronen
Sodankylä Geophysical Observatory, University of Oulu, Tähteläntie 62, 99600 Sodankylä, Finland
Space and Earth Observation Centre, Finnish Meteorological Institute, P.O. Box 503, 00101, Helsinki, Finland
Alan E. E. Rogers
MIT Haystack Observatory, Route 40, Westford, MA 01886, USA
Related authors
No articles found.
Pekka T. Verronen, Akira Mizuno, Yoshizumi Miyoshi, Sandeep Kumar, Taku Nakajima, Shin-Ichiro Oyama, Tomoo Nagahama, Satonori Nozawa, Monika E. Szeląg, Tuomas Häkkilä, Niilo Kalakoski, Antti Kero, Esa Turunen, Satoshi Kasahara, Shoichiro Yokota, Kunihiro Keika, Tomoaki Hori, Takefumi Mitani, Takeshi Takashima, and Iku Shinohara
Ann. Geophys., 43, 561–578, https://doi.org/10.5194/angeo-43-561-2025, https://doi.org/10.5194/angeo-43-561-2025, 2025
Short summary
Short summary
We use NO column density data from the Syowa station in Antarctica from 2012–2017. We compare these ground-based radiometer observations with results from a global atmosphere model to understand the year-to-year and day-to-day variability, shortcomings of current electron forcing, and how geomagnetic storms are driving the variability of NO. Our results demonstrate an underestimation in the magnitude of day-to-day variability in simulations, which calls for improved electron forcing in models.
Tuomas Häkkilä, Maxime Grandin, Markus Battarbee, Monika E. Szeląg, Markku Alho, Leo Kotipalo, Niilo Kalakoski, Pekka T. Verronen, and Minna Palmroth
Ann. Geophys., 43, 217–240, https://doi.org/10.5194/angeo-43-217-2025, https://doi.org/10.5194/angeo-43-217-2025, 2025
Short summary
Short summary
We study the atmospheric impact of auroral electron precipitation through the novel combination of both magnetospheric modelling and atmospheric modelling. We first simulate fluxes of auroral electrons and then use these fluxes to model their atmospheric impact. We find an increase of more than 200 % in thermospheric odd nitrogen and a corresponding decrease in stratospheric ozone of around 0.8 %. The produced auroral electron precipitation is realistic and shows potential for future studies.
Marc Hansen, Daniela Banyś, Mark Clilverd, David Wenzel, Tero Raita, and Mohammed Mainul Hoque
Ann. Geophys., 43, 55–65, https://doi.org/10.5194/angeo-43-55-2025, https://doi.org/10.5194/angeo-43-55-2025, 2025
Short summary
Short summary
The amplitude of subionospheric very low-frequency (VLF) radio signals does not show a symmetrical behavior over the year, which would be expected from its dependency on the solar position. The VLF amplitude rather shows a distinctive sharp decrease around October, which is hence called the "October effect". This study is the first to systematically investigate this October effect, which shows a clear latitudinal dependency.
Carsten Baumann, Antti Kero, Shikha Raizada, Markus Rapp, Michael P. Sulzer, Pekka T. Verronen, and Juha Vierinen
Ann. Geophys., 40, 519–530, https://doi.org/10.5194/angeo-40-519-2022, https://doi.org/10.5194/angeo-40-519-2022, 2022
Short summary
Short summary
The Arecibo radar was used to probe free electrons of the ionized atmosphere between 70 and 100 km altitude. This is also the altitude region were meteors evaporate and form secondary particulate matter, the so-called meteor smoke particles (MSPs). Free electrons attach to these MSPs when the sun is below the horizon and cause a drop in the number of free electrons, which are the subject of these measurements. We also identified a different number of free electrons during sunset and sunrise.
Irina Mironova, Miriam Sinnhuber, Galina Bazilevskaya, Mark Clilverd, Bernd Funke, Vladimir Makhmutov, Eugene Rozanov, Michelle L. Santee, Timofei Sukhodolov, and Thomas Ulich
Atmos. Chem. Phys., 22, 6703–6716, https://doi.org/10.5194/acp-22-6703-2022, https://doi.org/10.5194/acp-22-6703-2022, 2022
Short summary
Short summary
From balloon measurements, we detected unprecedented, extremely powerful, electron precipitation over the middle latitudes. The robustness of this event is confirmed by satellite observations of electron fluxes and chemical composition, as well as by ground-based observations of the radio signal propagation. The applied chemistry–climate model shows the almost complete destruction of ozone in the mesosphere over the region where high-energy electrons were observed.
Pekka T. Verronen, Antti Kero, Noora Partamies, Monika E. Szeląg, Shin-Ichiro Oyama, Yoshizumi Miyoshi, and Esa Turunen
Ann. Geophys., 39, 883–897, https://doi.org/10.5194/angeo-39-883-2021, https://doi.org/10.5194/angeo-39-883-2021, 2021
Short summary
Short summary
This paper is the first to simulate and analyse the pulsating aurorae impact on middle atmosphere on monthly/seasonal timescales. We find that pulsating aurorae have the potential to make a considerable contribution to the total energetic particle forcing and increase the impact on upper stratospheric odd nitrogen and ozone in the polar regions. Thus, it should be considered in atmospheric and climate simulations.
Minna Palmroth, Maxime Grandin, Theodoros Sarris, Eelco Doornbos, Stelios Tourgaidis, Anita Aikio, Stephan Buchert, Mark A. Clilverd, Iannis Dandouras, Roderick Heelis, Alex Hoffmann, Nickolay Ivchenko, Guram Kervalishvili, David J. Knudsen, Anna Kotova, Han-Li Liu, David M. Malaspina, Günther March, Aurélie Marchaudon, Octav Marghitu, Tomoko Matsuo, Wojciech J. Miloch, Therese Moretto-Jørgensen, Dimitris Mpaloukidis, Nils Olsen, Konstantinos Papadakis, Robert Pfaff, Panagiotis Pirnaris, Christian Siemes, Claudia Stolle, Jonas Suni, Jose van den IJssel, Pekka T. Verronen, Pieter Visser, and Masatoshi Yamauchi
Ann. Geophys., 39, 189–237, https://doi.org/10.5194/angeo-39-189-2021, https://doi.org/10.5194/angeo-39-189-2021, 2021
Short summary
Short summary
This is a review paper that summarises the current understanding of the lower thermosphere–ionosphere (LTI) in terms of measurements and modelling. The LTI is the transition region between space and the atmosphere and as such of tremendous importance to both the domains of space and atmosphere. The paper also serves as the background for European Space Agency Earth Explorer 10 candidate mission Daedalus.
Tuomas Häkkilä, Pekka T. Verronen, Luis Millán, Monika E. Szeląg, Niilo Kalakoski, and Antti Kero
Ann. Geophys., 38, 1299–1312, https://doi.org/10.5194/angeo-38-1299-2020, https://doi.org/10.5194/angeo-38-1299-2020, 2020
Short summary
Short summary
The atmospheric impacts of energetic particle precipitation (EPP) can be useful in understanding the uncertainties of measuring the precipitation. Hence, information on how strong of an EPP flux has observable atmospheric impacts is needed. In this study, we find such threshold flux values using odd hydrogen concentrations from both satellite observations and model simulations. We consider the effects of solar proton events and radiation belt electron precipitation in the middle atmosphere.
Jia Jia, Antti Kero, Niilo Kalakoski, Monika E. Szeląg, and Pekka T. Verronen
Atmos. Chem. Phys., 20, 14969–14982, https://doi.org/10.5194/acp-20-14969-2020, https://doi.org/10.5194/acp-20-14969-2020, 2020
Short summary
Short summary
Recent studies have reported up to a 10 % average decrease of lower stratospheric ozone at 20 km altitude following solar proton events (SPEs). Our study uses 49 events that occurred after the launch of Aura MLS (July 2004–now) and 177 events that occurred in the WACCM-D simulation period (Jan 1989–Dec 2012) to evaluate ozone changes following SPEs. The statistical and case-by-case studies show no solid evidence of SPE's direct impact on the lower stratospheric ozone.
Cited articles
Andersson, M., Verronen, P., Rodger, C., Clilverd, M. A., and Seppälä, A.:
Missing driver in the Sun–Earth connection from energetic electron precipitation impacts mesospheric ozone, Nat. Commun., 5, 5197, https://doi.org/10.1038/ncomms6197, 2014.
Baker, D. N., Erickson, P. J., Fennell, J. F., Foster, J. C., Jaynes, A. N., and Verronen, P. T.:
Space Weather Effects in the Earth's Radiation Belts, Space Sci. Rev., 214, 17, https://doi.org/10.1007/s11214-017-0452-7, 2018.
Brasseur, G. P. and Solomon, S.:
Aeronomy of the Middle Atmosphere, 3rd Edn., Springer, Dordrecht, Netherlands, 2005.
Buehler, S. A., Eriksson, P., Kuhn, T., von Engeln, A., and Verdes, C.:
ARTS, the atmospheric radiative transfer simulator, J. Quant. Spectrosc. Ra., 91, 65–93, https://doi.org/10.1016/j.jqsrt.2004.05.051, 2005.
Buehler, S. A., Mendrok, J., Eriksson, P., Perrin, A., Larsson, R., and Lemke, O.: ARTS, the Atmospheric Radiative Transfer Simulator – version 2.2, the planetary toolbox edition, Geosci. Model Dev., 11, 1537–1556, https://doi.org/10.5194/gmd-11-1537-2018, 2018.
Christensen, O. M. and Eriksson, P.: Time series inversion of spectra from ground-based radiometers, Atmos. Meas. Tech., 6, 1597–1609, https://doi.org/10.5194/amt-6-1597-2013, 2013.
Clough, S., Shephard, M., Mlawer, E., Delamere, J., Iacono, M., Cady-Pereira, K., Boukabara, S., and Brown, P.:
Atmospheric radiative transfer modeling: a summary of the AER codes, J. Quant. Spectrosc. Ra., 91, 233–244, 2005.
Daae, M., Espy, P., Nesse Tyssøy, H., Newnham, D., Stadsnes, J., and Søraas, F.:
The effect of energetic electron precipitation on middle mesospheric night-time ozone during and after a moderate geomagnetic storm, Geophys. Res. Lett., 39, L21811, https://doi.org/10.1029/2012GL053787, 2012.
Daae, M., Straub, C., Espy, P. J., and Newnham, D. A.: Atmospheric ozone above Troll station, Antarctica observed by a ground based microwave radiometer, Earth Syst. Sci. Data, 6, 105–115, https://doi.org/10.5194/essd-6-105-2014, 2014.
Eriksson, P., Jiménez, C., and Buehler, S. A.:
Qpack, a general tool for instrument simulation and retrieval work, J. Quant. Spectrosc. Ra., 91, 47–64, https://doi.org/10.1016/j.jqsrt.2004.05.050, 2005.
Eriksson, P., Buehler, S. A., Davis, C. P., Emde, C., and Lemke, O.:
ARTS, the atmospheric radiative transfer simulator, version 2, J. Quant. Spectrosc. Ra., 112, 1551–1558, https://doi.org/10.1016/j.jqsrt.2011.03.001, 2011.
GATS: GATS Data Server, http://data.gats-inc.com/saber/Version2_0/Level2A/, GATS [data set], last access: 30 April 2020.
Gordon, I. E., Rothman, L. S., Hill, C., Kochanov, R. V., Tan, Y., Bernath, P. F., Birk, M., Boudon, V., Campargue, A., Chance, K. V., Drouin, B. J., Flaud, J.-M., Gamache, R. R., Hodges, J. T., Jacquemart, D., Perevalov, V. I., Perrin, A., Shine, K. P., Smith, M.-A. H., Tennyson, J., Toon, G. C., Tran, H., Tyuterev, V. G., Barbe, A., Császár, A. G., Devi, V. M., Furtenbacher, T., Harrison, J. J., Hartmann, J.-M., Jolly, A., Johnson, T. J., Karman, T., Kleiner, I., Kyuberis, A. A., Loos, J., Lyulin, O. M., Massie, S. T., Mikhailenko, S. N., Moazzen-Ahmadi, N., Müller, H. S. P., Naumenko, O. V., Nikitin, A. V., Polyansky, O. L., Rey, M., Rotger, M., Sharpe, S. W., Sung, K., Starikova, E., Tashkun, S. A., Vander Auwera, J., Wagner, G., Wilzewski, J., Wcislo, P., Yu, S., and Zak, E. J.:
The HITRAN2016 molecular spectroscopic database, J. Quant. Spectrosc. Ra., 203, 3–69, https://doi.org/10.1016/j.jqsrt.2017.06.038, 2017.
Hartogh, P., Jarchow, C., Sonnemann, G. R., and Grygalashvyly, M.:
On the spatiotemporal behavior of ozone within the upper mesosphere/mesopause region under nearly polar night conditions, J. Geophys. Res., 109, D18303, https://doi.org/10.1029/2004JD004576, 2004.
Hays, P. B. and Roble, R. G.:
Observation of mesospheric ozone at low latitudes, Planet. Space Sci., 21, 273–279, https://doi.org/10.1016/0032-0633(73)90011-1, 1973.
Kulikov, M. Y., Nechaev, A. A., Belikovich, M. V., Vorobeva, E. V., Grygalashvyly, M., Sonnemann, G. R., and Feigin, A. M.:
Boundary of nighttime ozone chemical equilibrium in the mesopause region from SABER data: Implications for derivation of atomic oxygen and atomic hydrogen, Geophys. Res. Lett., 46, 997–1004, https://doi.org/10.1029/2018GL080364, 2019.
Kuntz, M.:
A new implementation of the Humlicek algorithm for the calculation of the Voigt profile function, J. Quant. Spectrosc. Ra., 57, 819–824, 1997.
Li, A., Roth, C. Z., Pérot, K., Christensen, O. M., Bourassa, A., Degenstein, D. A., and Murtagh, D. P.: Retrieval of daytime mesospheric ozone using OSIRIS observations of O2 (a1Δg) emission, Atmos. Meas. Tech., 13, 6215–6236, https://doi.org/10.5194/amt-13-6215-2020, 2020.
Limpasuvan, V., Orsolini, Y. J., Chandran, A., Garcia, R. R., and Smith, A. K.:
On the composite response of the MLT to major sudden stratospheric warming events with elevated stratopause, J. Geophys. Res.-Atmos., 121, 4518–4537, https://doi.org/10.1002/2015JD024401, 2016.
López-Puertas, M., García-Comas, M., Funke, B., Gardini, A., Stiller, G. P., von Clarmann, T., Glatthor, N., Laeng, A., Kaufmann, M., Sofieva, V. F., Froidevaux, L., Walker, K. A., and Shiotani, M.: MIPAS observations of ozone in the middle atmosphere, Atmos. Meas. Tech., 11, 2187–2212, https://doi.org/10.5194/amt-11-2187-2018, 2018.
Marsh, D. R., Smith, A., Brasseur, G., Kaufmann, M., and Grossmann, K.:
The existence of a tertiary ozone maximum in the high latitude middle mesosphere, Geophys. Res. Lett., 28, 4531–4534, https://doi.org/10.1029/2001GL013791, 2001.
Marsh, D. R., Mills, M. J., Kinnison, D. E., and Lamarque, J.-F.:
Climate change from 1850 to 2005 simulated in CESM1 (WACCM), J. Climate, 26, 7372–7391, https://doi.org/10.1175/JCLI-D-12-00558.1, 2013.
Mlawer, E. J., Payne, V. H., Moncet, J.-L., Delamere, J. S., Alvarado, M. J., and Tobin, D. C.:
Development and recent evaluation of the MT-CKD model of continuum absorption, Philos. T. R. Soc. A, 370, 2520–2556, 2012.
Mlynczak, M. G., Hunt, L. A., Russell, J. M., and Marshall, B. T.:
Updated SABER night atomic oxygen and implications for SABER ozone and atomic hydrogen, Geophys. Res. Lett., 45, 5735–5741, https://doi.org/10.1029/2018GL077377, 2018.
NERC: UK Polar Data Centre, https://www.bas.ac.uk/data/uk-pdc/, last access: 22 March 2022.
Newnham, D. A., Clilverd, M. A., Kosch, M., Seppälä, A., and Verronen, P. T.: Simulation study for ground-based Ku-band microwave observations of ozone and hydroxyl in the polar middle atmosphere, Atmos. Meas. Tech., 12, 1375–1392, https://doi.org/10.5194/amt-12-1375-2019, 2019.
Newnham, D. A., Clilverd, M. A., Clark, W. D. J., Kosch, M., Verronen, P. T., and Rogers, A. E. E.:
Atmospheric observational datasets: Ozone vertical profiles in the polar middle atmosphere north of Ny Ålesund, Spitsbergen (Version 1.0) [data set], NERC EDS UK Polar Data Centre, https://doi.org/10.5285/19845e8e-d6ef-4f95-8961-4da60f8294d3, 2022.
Palmroth, M., Grandin, M., Sarris, T., Doornbos, E., Tourgaidis, S., Aikio, A., Buchert, S., Clilverd, M. A., Dandouras, I., Heelis, R., Hoffmann, A., Ivchenko, N., Kervalishvili, G., Knudsen, D. J., Kotova, A., Liu, H.-L., Malaspina, D. M., March, G., Marchaudon, A., Marghitu, O., Matsuo, T., Miloch, W. J., Moretto-Jørgensen, T., Mpaloukidis, D., Olsen, N., Papadakis, K., Pfaff, R., Pirnaris, P., Siemes, C., Stolle, C., Suni, J., van den IJssel, J., Verronen, P. T., Visser, P., and Yamauchi, M.: Lower-thermosphere–ionosphere (LTI) quantities: current status of measuring techniques and models, Ann. Geophys., 39, 189–237, https://doi.org/10.5194/angeo-39-189-2021, 2021.
Pancheva, D., Mukhtarov, P., and Smith, A. K.:
Nonmigrating tidal variability in the SABER/TIMED mesospheric ozone, Geophys. Res. Lett., 41, 4059–4067, https://doi.org/10.1002/2014GL059844, 2014.
Rodgers, C. D.:
Inverse methods for atmospheric sounding: Theory and Practice, vol. 2 of Series on Atmospheric, Ocean and Planetary Physics, World Scientific, Singapore, https://doi.org/10.1142/3171, 2000.
Rogers, A. E. E., Lekberg, M., and Pratap, P.:
Seasonal and diurnal variations of ozone near the mesopause from observations of the 11.072-GHz line, J. Atmos. Ocean. Tech., 26, 2192–2199, https://doi.org/10.1175/2009JTECHA1291.1, 2009.
Rogers, A. E. E., Erickson, P., Fish, V. L., Kittredge, J., Danford, S., Marr, J. M., Arndt, M. B., Sarabia, J., Costa, D., and May, S. K.:
Repeatability of the seasonal variations of ozone near the mesopause from observations of the 11.072-GHz line, J. Atmos. Ocean. Tech., 29, 1492–1504, https://doi.org/10.1175/JTECH-D-11-00193.1, 2012.
Ryan, N. J. and Walker, K. A.:
The effect of spectroscopic parameter inaccuracies on ground-based millimeter wave remote sensing of the atmosphere, J. Quant. Spectrosc. Ra., 161, 50–59, https://doi.org/10.1016/j.jqsrt.2015.03.012, 2015.
Ryan, N. J., Walker, K. A., Raffalski, U., Kivi, R., Gross, J., and Manney, G. L.: Ozone profiles above Kiruna from two ground-based radiometers, Atmos. Meas. Tech., 9, 4503–4519, https://doi.org/10.5194/amt-9-4503-2016, 2016.
Sinnhuber, M., Nieder, H., and Wieters, N.:
Energetic Particle Precipitation and the Chemistry of the Mesosphere/Lower Thermosphere, Surv. Geophys., 33, 1281–1334, https://doi.org/10.1007/s10712-012-9201-3, 2012.
Siskind, D. E., Merkel, A. W., Marsh, D. R., Randall, C. E., Hervig, M. E., Mlynczak, M. G., and Russell, J. M.:
Understanding the effects of polar mesospheric clouds on the environment of the upper mesosphere and lower thermosphere, J. Geophys. Res.-Atmos., 123, 11,705–11,719, https://doi.org/10.1029/2018JD028830, 2018.
Smith, A. K., Harvey, V. L., Mlynczak, M. G., Funke, B., García-Comas, M., Hervig, M., Kaufmann, M., Kyrölä, E., López-Puertas, M., McDade, I., Randall, C. E., Russell III, J. M., Sheese, P. E., Shiotani, M., Skinner, W. R., Suzuki, M., and Walker, K. A.:
Satellite observations of ozone in the upper mesosphere, J. Geophys. Res.-Atmos., 118, 5803–5821, https://doi.org/10.1002/jgrd.50445, 2013.
Smith, A. K., López-Puertas, M., Funke, B., García-Comas, M., Mlynczak, M. G., and Holt, L. A.:
Nighttime ozone variability in the high latitude winter mesosphere, J. Geophys. Res.-Atmos., 119, 13547–13564, https://doi.org/10.1002/2014JD021987, 2015.
Smith, A. K., Espy, P. J., López-Puertas, M., and Tweedy, O. V.:
Spatial and temporal structure of the tertiary ozone maximum in the polar winter mesosphere, J. Geophys. Res.-Atmos., 123, 4373–4389, https://doi.org/10.1029/2017JD028030, 2018.
Smith-Johnsen, C., Orsolini, Y., Stordal, F., Limpasuvan, V., and Pérot, K.:
Nighttime mesospheric ozone enhancements during the 2002 southern hemispheric major stratospheric warming, J. Atmos. Sol.-Terr. Phy., 168, 100–108, https://doi.org/10.1016/j.jastp.2017.12.018, 2018.
Sofieva, V. F., Kyrölä, E., Verronen, P. T., Seppälä, A., Tamminen, J., Marsh, D. R., Smith, A. K., Bertaux, J.-L., Hauchecorne, A., Dalaudier, F., Fussen, D., Vanhellemont, F., Fanton d'Andon, O., Barrot, G., Guirlet, M., Fehr, T., and Saavedra, L.: Spatio-temporal observations of the tertiary ozone maximum, Atmos. Chem. Phys., 9, 4439–4445, https://doi.org/10.5194/acp-9-4439-2009, 2009.
Tenneti, S. N. and Rogers, A. E. E.:
Development of an optimized antenna and other enhancements of a spectrometer for the study of ozone in the mesosphere,
VSRT and MOSAIC Memo 063,
available at: https://www.haystack.mit.edu/wp-content/uploads/2020/07/memo_VSRT_063.pdf (last access: 21 February 2019), 2009.
Van Vleck, J. and Huber, D.:
Absorption, emission, and linebreadths: A semi-historical perspective, Rev. Mod. Phys., 49, 939, https://doi.org/10.1103/RevModPhys.49.939, 1977.
Verronen, P. T. and Lehmann, R.:
Enhancement of odd nitrogen modifies mesospheric ozone chemistry during polar winter, Geophys. Res. Lett., 42, 10445–10452, https://doi.org/10.1002/2015GL066703, 2015.
Verronen, P. T., Andersson, M. E., Marsh, D. R., Kovács, T., and Plane, J. M. C.:
WACCM-D – Whole Atmosphere Community Climate Model with D-region ion chemistry, J. Adv. Model. Earth Sy., 8, 954–975, https://doi.org/10.1002/2015MS000592, 2016.
Zawedde, A. E., Nesse Tyssøy, H., Stadsnes, J., and Sandanger, M. I.:
Are EEP events important for the tertiary ozone maximum?, J. Geophys. Res.-Space, 124, 5976–5994, https://doi.org/10.1029/2018JA026201, 2019.
Zhu, X., Yee, J.-H., and Talaat, E. R.:
Effect of dynamical-photochemical coupling on oxygen airglow emission and implications for daytime ozone retrieved from 1.27 µm emission, J. Geophys. Res., 112, D20304, https://doi.org/10.1029/2007JD008447, 2007.
Short summary
Ozone (O3) is an important trace gas in the mesosphere and lower thermosphere (MLT), affecting heating rates and chemistry. O3 profiles measured by the Ny-Ålesund Ozone in the Mesosphere Instrument agree with Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) for winter night-time, but autumn twilight SABER abundances are up to 50 % higher. O3 abundances in the MLT from two different SABER channels also show significant differences for both autumn twilight and summer daytime.
Ozone (O3) is an important trace gas in the mesosphere and lower thermosphere (MLT), affecting...