Articles | Volume 15, issue 18 
            
                
                    
            
            
            https://doi.org/10.5194/amt-15-5207-2022
                    © Author(s) 2022. This work is distributed under 
the Creative Commons Attribution 4.0 License.
                the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-5207-2022
                    © Author(s) 2022. This work is distributed under 
the Creative Commons Attribution 4.0 License.
                the Creative Commons Attribution 4.0 License.
Thermal–optical analysis of quartz fiber filters loaded with snow samples – determination of iron based on interferences caused by mineral dust
                                            Institute of Technologies and Analytics, TU Wien, Vienna, 1060,
Austria
                                        
                                    Marion Greilinger
                                            Section Climate Monitoring and Cryosphere, Zentralanstalt für Meteorologie und Geodynamik (ZAMG), Vienna, 1190, Austria
                                        
                                    Bernadette Kirchsteiger
                                            Institute of Technologies and Analytics, TU Wien, Vienna, 1060,
Austria
                                        
                                    Aron Göndör
                                            Institute of Technologies and Analytics, TU Wien, Vienna, 1060,
Austria
                                        
                                    Christopher Herzig
                                            Institute of Technologies and Analytics, TU Wien, Vienna, 1060,
Austria
                                        
                                    Andreas Limbeck
                                            Institute of Technologies and Analytics, TU Wien, Vienna, 1060,
Austria
                                        
                                    Elisabeth Eitenberger
                                            Institute of Technologies and Analytics, TU Wien, Vienna, 1060,
Austria
                                        
                                    Anne Kasper-Giebl
                                            Institute of Technologies and Analytics, TU Wien, Vienna, 1060,
Austria
                                        
                                    Related authors
Daniela Kau, Marion Greilinger, Andjela Vukićević, Jakub Bielecki, Laura Kronlachner, and Anne Kasper-Giebl
                                        EGUsphere, https://doi.org/10.5194/egusphere-2025-5047, https://doi.org/10.5194/egusphere-2025-5047, 2025
                                    This preprint is open for discussion and under review for The Cryosphere (TC). 
                                    Short summary
                                    Short summary
                                            
                                                We quantify elemental carbon and mineral dust in the seasonal snow cover sampled at a high-alpine site (2016–2024). The co-occurrence of these compounds in thermal-optical analysis necessitates a linear laser correction to minimize the bias for elemental carbon. We identify samples containing mineral dust via thermal-optical analysis and compare it to an approach from literature. We approximate mineral dust from thermal-optical analysis data and the composition of dust from long-range transport.
                                            
                                            
                                        Daniela Kau, Marion Greilinger, Andjela Vukićević, Jakub Bielecki, Laura Kronlachner, and Anne Kasper-Giebl
                                        EGUsphere, https://doi.org/10.5194/egusphere-2025-5047, https://doi.org/10.5194/egusphere-2025-5047, 2025
                                    This preprint is open for discussion and under review for The Cryosphere (TC). 
                                    Short summary
                                    Short summary
                                            
                                                We quantify elemental carbon and mineral dust in the seasonal snow cover sampled at a high-alpine site (2016–2024). The co-occurrence of these compounds in thermal-optical analysis necessitates a linear laser correction to minimize the bias for elemental carbon. We identify samples containing mineral dust via thermal-optical analysis and compare it to an approach from literature. We approximate mineral dust from thermal-optical analysis data and the composition of dust from long-range transport.
                                            
                                            
                                        Karl Espen Yttri, Are Bäcklund, Franz Conen, Sabine Eckhardt, Nikolaos Evangeliou, Markus Fiebig, Anne Kasper-Giebl, Avram Gold, Hans Gundersen, Cathrine Lund Myhre, Stephen Matthew Platt, David Simpson, Jason D. Surratt, Sönke Szidat, Martin Rauber, Kjetil Tørseth, Martin Album Ytre-Eide, Zhenfa Zhang, and Wenche Aas
                                    Atmos. Chem. Phys., 24, 2731–2758, https://doi.org/10.5194/acp-24-2731-2024, https://doi.org/10.5194/acp-24-2731-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                We discuss carbonaceous aerosol (CA) observed at the high Arctic Zeppelin Observatory (2017 to 2020). We find that organic aerosol is a significant fraction of the Arctic aerosol, though less than sea salt aerosol and mineral dust, as well as non-sea-salt sulfate, originating mainly from anthropogenic sources in winter and from natural sources in summer, emphasizing the importance of wildfires for biogenic secondary organic aerosol and primary biological aerosol particles observed in the Arctic.
                                            
                                            
                                        Clémence Rose, Martine Collaud Coen, Elisabeth Andrews, Yong Lin, Isaline Bossert, Cathrine Lund Myhre, Thomas Tuch, Alfred Wiedensohler, Markus Fiebig, Pasi Aalto, Andrés Alastuey, Elisabeth Alonso-Blanco, Marcos Andrade, Begoña Artíñano, Todor Arsov, Urs Baltensperger, Susanne Bastian, Olaf Bath, Johan Paul Beukes, Benjamin T. Brem, Nicolas Bukowiecki, Juan Andrés Casquero-Vera, Sébastien Conil, Konstantinos Eleftheriadis, Olivier Favez, Harald Flentje, Maria I. Gini, Francisco Javier Gómez-Moreno, Martin Gysel-Beer, Anna Gannet Hallar, Ivo Kalapov, Nikos Kalivitis, Anne Kasper-Giebl, Melita Keywood, Jeong Eun Kim, Sang-Woo Kim, Adam Kristensson, Markku Kulmala, Heikki Lihavainen, Neng-Huei Lin, Hassan Lyamani, Angela Marinoni, Sebastiao Martins Dos Santos, Olga L. Mayol-Bracero, Frank Meinhardt, Maik Merkel, Jean-Marc Metzger, Nikolaos Mihalopoulos, Jakub Ondracek, Marco Pandolfi, Noemi Pérez, Tuukka Petäjä, Jean-Eudes Petit, David Picard, Jean-Marc Pichon, Veronique Pont, Jean-Philippe Putaud, Fabienne Reisen, Karine Sellegri, Sangeeta Sharma, Gerhard Schauer, Patrick Sheridan, James Patrick Sherman, Andreas Schwerin, Ralf Sohmer, Mar Sorribas, Junying Sun, Pierre Tulet, Ville Vakkari, Pieter Gideon van Zyl, Fernando Velarde, Paolo Villani, Stergios Vratolis, Zdenek Wagner, Sheng-Hsiang Wang, Kay Weinhold, Rolf Weller, Margarita Yela, Vladimir Zdimal, and Paolo Laj
                                    Atmos. Chem. Phys., 21, 17185–17223, https://doi.org/10.5194/acp-21-17185-2021, https://doi.org/10.5194/acp-21-17185-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                Aerosol particles are a complex component of the atmospheric system the effects of which are among the most uncertain in climate change projections. Using data collected at 62 stations, this study provides the most up-to-date picture of the spatial distribution of particle number concentration and size distribution worldwide, with the aim of contributing to better representation of aerosols and their interactions with clouds in models and, therefore, better evaluation of their impact on climate.
                                            
                                            
                                        Theresa Haller, Eva Sommer, Thomas Steinkogler, Christian Rentenberger, Anna Wonaschuetz, Anne Kasper-Giebl, Hinrich Grothe, and Regina Hitzenberger
                                    Atmos. Meas. Tech., 14, 3721–3735, https://doi.org/10.5194/amt-14-3721-2021, https://doi.org/10.5194/amt-14-3721-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                Structural changes of carbonaceous aerosol samples during thermal–optical measurement techniques cause a darkening of the sample during the heating procedure which can influence the attribution of the carbonaceous material to organic and elemental carbon. We analyzed structural changes of atmospheric aerosol samples occurring during the EUSAAR2 and NIOSH870 measurement protocols with Raman spectroscopy. We found that the darkening of the sample is not necessarily caused by graphitization.
                                            
                                            
                                        Cited articles
                        
                        Alfaro, S. C., Lafon, S., Rajot, J. L., Formenti, P., Gaudichet, A., and Maille, M.: Iron oxides and light absorption by pure desert dust: An experimental study, J. Geophys. Res.-Atmos., 109, D08208,
https://doi.org/10.1029/2003JD004374, 2004. 
                    
                
                        
                        Birch, M. E. and Cary, R. A.: Elemental carbon-based method for monitoring
occupational exposures to particulate diesel exhaust, Aerosol Sci. Tech.,
25, 221–241, https://doi.org/10.1080/02786829608965393, 1996. 
                    
                
                        
                        Bladt, H., Schmid, J., Kireeva, E. D., Popovicheva, O. B., Perseantseva, N.
M., Timofeev, M. A., Heister, K., Uihlein, J., Ivleva, N. P., and Niessner,
R.: Impact of Fe content in laboratory-produced soot aerosol on its
composition, structure, and thermo-chemical properties, Aerosol Sci. Tech.,
46, 1337–1348, https://doi.org/10.1080/02786826.2012.711917, 2012. 
                    
                
                        
                        Bladt, H., Ivleva, N. P., and Niessner, R.: Internally mixed multicomponent
soot: Impact of different salts on soot structure and thermo-chemical
properties, J. Aerosol Sci., 70, 26–35,
https://doi.org/10.1016/j.jaerosci.2013.11.007, 2014. 
                    
                
                        
                        Cavalli, F., Viana, M., Yttri, K. E., Genberg, J., and Putaud, J.-P.: Toward a standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: the EUSAAR protocol, Atmos. Meas. Tech., 3, 79–89, https://doi.org/10.5194/amt-3-79-2010, 2010. 
                    
                
                        
                        Chow, J. C., Watson, J. G., Pritchett, L. C., Pierson, W. R., Frazier, C.
A., and Purcell, R. G.: The DRI thermal/optical reflectance carbon analysis
system: description, evaluation and applications in US air quality studies,
Atmos. Environ. A.-Gen., 27, 1185–1201,
https://doi.org/10.1016/0960-1686(93)90245-T, 1993. 
                    
                
                        
                        Chow, J. C., Watson, J. G., Chen, L. W. A., Chang, M. O., Robinson, N. F.,
Trimble, D., and Kohl, S.: The IMPROVE_A temperature protocol
for thermal/optical carbon analysis: maintaining consistency with a
long-term database, JAPCA J. Air Waste Ma., 57, 1014–1023,
https://doi.org/10.3155/1047-3289.57.9.1014, 2007. 
                    
                
                        
                        Degen, T., Sadki, M., Bron, E., König, U., and Nénert, G.: The
highscore suite, Powder Diffr., 29, S13–S18,
https://doi.org/10.1017/S0885715614000840, 2014. 
                    
                
                        
                        Di Mauro, B., Fava, F., Ferrero, L., Garzonio, R., Baccolo, G., Delmonte,
B., and Colombo, R.: Mineral dust impact on snow radiative properties in the
European Alps combining ground, UAV, and satellite observations, J. Geophys.
Res.-Atmos., 120, 6080–6097, https://doi.org/10.1002/2015JD023287, 2015. 
                    
                
                        
                        DIN e.V.: DIN EN 16909:2017, Außenluft – Messung von auf Filtern
gesammeltem elementaren Kohlenstoff (EC) und organisch gebundenem
Kohlenstoff (OC); Deutsche Fassung EN 16909:2017, Beuth Verlag GmbH, Berlin,
2017. 
                    
                
                        
                        Doherty, S. J., Hegg, D. A., Johnson, J. E., Quinn, P. K., Schwarz, J. P.,
Dang, C., and Warren, S. G.: Causes of variability in light absorption by
particles in snow at sites in Idaho and Utah, J. Geophys. Res.-Atmos., 121,
4751–4768, https://doi.org/10.1002/2015JD024375, 2018. 
                    
                
                        
                        Eom, H. J., Jung, H. J., Sobanska, S., Chung, S. G., Son, Y. S., Kim, J. C.,
Sunwoo, Y., and Ro, C. U.: Iron speciation of airborne subway particles by
the combined use of energy dispersive electron probe X-ray microanalysis and
Raman microspectrometry, Anal. Chem., 85, 10424–10431,
https://doi.org/10.1021/ac402406n, 2013. 
                    
                
                        
                        Formenti, P., Caquineau, S., Desboeufs, K., Klaver, A., Chevaillier, S., Journet, E., and Rajot, J. L.: Mapping the physico-chemical properties of mineral dust in western Africa: mineralogical composition, Atmos. Chem. Phys., 14, 10663–10686, https://doi.org/10.5194/acp-14-10663-2014, 2014. 
                    
                
                        
                        Forsström, S., Isaksson, E., Skeie, R. B., Ström, J., Pedersen, C.
A., Hudson, S. R., Berntsen, T. K., Lihavainen, H., Godtliebsen, F., and
Gerland, S.: Elemental carbon measurements in European Arctic snow packs, J.
Geophys. Res.-Atmos., 118, 13–614, https://doi.org/10.1002/2013JD019886,
2013. 
                    
                
                        
                        Greilinger, M., Schauer, G., Baumann-Stanzer, K., Skomorowski, P.,
Schöner, W., and Kasper-Giebl, A.: Contribution of saharan dust to ion
deposition loads of high alpine snow packs in Austria (1987–2017), Front.
Earth Sci., 6, 126, https://doi.org/10.3389/feart.2018.00126, 2018. 
                    
                
                        
                        Grenfell, T. C., Doherty, S. J., Clarke, A. D., and Warren, S. G.: Light
absorption from particulate impurities in snow and ice determined by
spectrophotometric analysis of filters, Appl. Optics, 50, 2037–2048,
https://doi.org/10.1364/AO.50.002037, 2011. 
                    
                
                        
                        Gul, C., Puppala, S. P., Kang, S., Adhikary, B., Zhang, Y., Ali, S., Li, Y., and Li, X.: Concentrations and source regions of light-absorbing particles in snow/ice in northern Pakistan and their impact on snow albedo, Atmos. Chem. Phys., 18, 4981–5000, https://doi.org/10.5194/acp-18-4981-2018, 2018. 
                    
                
                        
                        Gundel, L. A., Dod, R. L., Rosen, H., and Novakov, T.: The relationship
between optical attenuation and black carbon concentration for ambient and
source particles, Sci. Total Environ., 36, 197–202,
https://doi.org/10.1016/0048-9697(84)90266-3, 1984. 
                    
                
                        
                        Kabekkodu, S. N., Faber, J., and Fawcett, T.: New Powder Diffraction File
(PDF-4) in relational database format: advantages and data-mining
capabilities, Acta Crystallogr. B, 58, 333–337,
https://doi.org/10.1107/S0108768102002458, 2002. 
                    
                
                        
                        Kandler, K., Benker, N., Bundke, U., Cuevas, E., Ebert, M., Knippertz, P.,
Rodríguez, S., Schütz, L., and Weinbruch, S.: Chemical composition
and complex refractive index of Saharan Mineral Dust at Izaña, Tenerife
(Spain) derived by electron microscopy, Atmos. Environ., 41, 8058–8074,
https://doi.org/10.1016/j.atmosenv.2007.06.047, 2007. 
                    
                
                        
                        Kang, S., Zhang, Y., Qian, Y., and Wang, H.: A review of black carbon in
snow and ice and its impact on the cryosphere, Earth-Sci. Rev., 210, 103346,
https://doi.org/10.1016/j.earscirev.2020.103346, 2020. 
                    
                
                        
                        Karanasiou, A., Diapouli, E., Cavalli, F., Eleftheriadis, K., Viana, M., Alastuey, A., Querol, X., and Reche, C.: On the quantification of atmospheric carbonate carbon by thermal/optical analysis protocols, Atmos. Meas. Tech., 4, 2409–2419, https://doi.org/10.5194/amt-4-2409-2011, 2011. 
                    
                
                        
                        Kaspari, S., Painter, T. H., Gysel, M., Skiles, S. M., and Schwikowski, M.: Seasonal and elevational variations of black carbon and dust in snow and ice in the Solu-Khumbu, Nepal and estimated radiative forcings, Atmos. Chem. Phys., 14, 8089–8103, https://doi.org/10.5194/acp-14-8089-2014, 2014. 
                    
                
                        
                        Kuchiki, K., Aoki, T., Niwano, M., Matoba, S., Kodama, Y., and Adachi, K.:
Elemental carbon, organic carbon, and dust concentrations in snow measured
with thermal optical and gravimetric methods: Variations during the
2007–2013 winters at Sapporo, Japan, J. Geophys. Res.-Atmos., 120, 868–882,
https://doi.org/10.1002/2014JD022144, 2015. 
                    
                
                        
                        Li, C., Yan, F., Kang, S., Chen, P., Han, X., Hu, Z., Zhang, G., Hong, Y., Gao, S., Qu, B., Zhu, Z., Li, J., Chen, B., and Sillanpää, M.: Re-evaluating black carbon in the Himalayas and the Tibetan Plateau: concentrations and deposition, Atmos. Chem. Phys., 17, 11899–11912, https://doi.org/10.5194/acp-17-11899-2017, 2017. 
                    
                
                        
                        Lim, S., Faïn, X., Zanatta, M., Cozic, J., Jaffrezo, J.-L., Ginot, P., and Laj, P.: Refractory black carbon mass concentrations in snow and ice: method evaluation and inter-comparison with elemental carbon measurement, Atmos. Meas. Tech., 7, 3307–3324, https://doi.org/10.5194/amt-7-3307-2014, 2014. 
                    
                
                        
                        Liu, H., Chen, T., Zou, X., Qing, C., and Frost, R. L.: Thermal treatment of
natural goethite: Thermal transformation and physical properties,
Thermochim. Acta, 568, 115–121, https://doi.org/10.1016/j.tca.2013.06.027, 2013. 
                    
                
                        
                        Meinander, O., Heikkinen, E., Aurela, M., and Hyvärinen, A.: Sampling,
Filtering, and Analysis Protocols to Detect Black Carbon, Organic Carbon,
and Total Carbon in Seasonal Surface Snow in an Urban Background and Arctic
Finland (> 60∘ N), Atmosphere-Basel, 11, 923,
https://doi.org/10.3390/atmos11090923, 2020. 
                    
                
                        
                        Neri, G., Bonaccorsi, L., Donato, A., Milone, C., Musolino, M. G., and
Visco, A. M.: Catalytic combustion of diesel soot over metal oxide
catalysts, Appl. Catal. B-Environ., 11, 217–231,
https://doi.org/10.1016/S0926-3373(96)00045-8, 1997. 
                    
                
                        
                        Nicolosi, E. M. G., Quincey, P., Font, A., and Fuller, G. W.: Light
attenuation versus evolved carbon (AVEC) – A new way to look at elemental and organic carbon analysis, Atmos. Environ., 175, 145–153,
https://doi.org/10.1016/j.atmosenv.2017.12.011, 2018. 
                    
                
                        
                        Petzold, A., Ogren, J. A., Fiebig, M., Laj, P., Li, S.-M., Baltensperger, U., Holzer-Popp, T., Kinne, S., Pappalardo, G., Sugimoto, N., Wehrli, C., Wiedensohler, A., and Zhang, X.-Y.: Recommendations for reporting “black carbon” measurements, Atmos. Chem. Phys., 13, 8365–8379, https://doi.org/10.5194/acp-13-8365-2013, 2013. 
                    
                
                        
                        Qian, Y., Yasunari, T. J., Doherty, S. J., Flanner, M. G., Lau, W. K., Ming,
J., Wang, H., Wang, M., Warren, S. G., and Zhang, R.: Light-absorbing
particles in snow and ice: Measurement and modeling of climatic and
hydrological impact, Adv. Atmos. Sci., 32, 64–91,
https://doi.org/10.1007/s00376-014-0010-0, 2015. 
                    
                
                        
                        Ramanathan, V. and Carmichael, G.: Global and regional climate changes due
to black carbon, Nat. Geosci., 1, 221–227, https://doi.org/10.1038/ngeo156, 2008. 
                    
                
                        
                        Schwarz, J. P., Doherty, S. J., Li, F., Ruggiero, S. T., Tanner, C. E., Perring, A. E., Gao, R. S., and Fahey, D. W.: Assessing Single Particle Soot Photometer and Integrating Sphere/Integrating Sandwich Spectrophotometer measurement techniques for quantifying black carbon concentration in snow, Atmos. Meas. Tech., 5, 2581–2592, https://doi.org/10.5194/amt-5-2581-2012, 2012. 
                    
                
                        
                        Svensson, J., Ström, J., Kivekäs, N., Dkhar, N. B., Tayal, S., Sharma, V. P., Jutila, A., Backman, J., Virkkula, A., Ruppel, M., Hyvärinen, A., Kontu, A., Hannula, H.-R., Leppäranta, M., Hooda, R. K., Korhola, A., Asmi, E., and Lihavainen, H.: Light-absorption of dust and elemental carbon in snow in the Indian Himalayas and the Finnish Arctic, Atmos. Meas. Tech., 11, 1403–1416, https://doi.org/10.5194/amt-11-1403-2018, 2018.
 
                    
                
                        
                        Torres, A., Bond, T. C., Lehmann, C. M., Subramanian, R., and Hadley, O. L.:
Measuring organic carbon and black carbon in rainwater: evaluation of
methods, Aerosol Sci. Tech., 48, 239–250,
https://doi.org/10.1080/02786826.2013.868596, 2014. 
                    
                
                        
                        Tuzet, F., Dumont, M., Lafaysse, M., Picard, G., Arnaud, L., Voisin, D., Lejeune, Y., Charrois, L., Nabat, P., and Morin, S.: A multilayer physically based snowpack model simulating direct and indirect radiative impacts of light-absorbing impurities in snow, The Cryosphere, 11, 2633–2653, https://doi.org/10.5194/tc-11-2633-2017, 2017. 
                    
                
                        
                        Tuzet, F., Dumont, M., Picard, G., Lamare, M., Voisin, D., Nabat, P., Lafaysse, M., Larue, F., Revuelto, J., and Arnaud, L.: Quantification of the radiative impact of light-absorbing particles during two contrasted snow seasons at Col du Lautaret (2058 m a.s.l., French Alps), The Cryosphere, 14, 4553–4579, https://doi.org/10.5194/tc-14-4553-2020, 2020. 
                    
                
                        
                        US EPA: Microwave Assisted Acid Digestion of Siliceous and Organically Based
Matrices, OHW, Method 3052, U.S. Environmental Protection Agency, https://www.epa.gov/sites/default/files/2015-12/documents/3052.pdf (last access: 13 September 2022), 1996. 
                    
                
                        
                        Wang, M., Xu, B., Zhao, H., Cao, J., Joswiak, D., Wu, G., and Lin, S.: The
influence of dust on quantitative measurements of black carbon in ice and
snow when using a thermal optical method. Aerosol Sci. Tech., 46, 60–69,
https://doi.org/10.1080/02786826.2011.605815, 2012. 
                    
                
                        
                        Wang, X., Zhang, X., and Di, W.: Development of an improved two-sphere integration technique for quantifying black carbon concentrations in the atmosphere and seasonal snow, Atmos. Meas. Tech., 13, 39–52, https://doi.org/10.5194/amt-13-39-2020, 2020. 
                    
                
                        
                        Warren, S. G. and Wiscombe, W. J.: A model for the spectral albedo of snow.
II: Snow containing atmospheric aerosols, J. Atmos. Sci.,
37, 2734–2745, https://doi.org/10.1175/1520-0469(1980)037<2734:AMFTSA>2.0.CO;2, 1980. 
                    
                
                        
                        Yamanoi, Y. and Nakashima, S.: In situ high-temperature visible
microspectroscopy for volcanic materials, Appl. Spectrosc., 59, 1415–1419,
https://doi.org/10.1366/000370205774783205, 2005. 
                    
                
                        
                        Yamanoi, Y., Nakashima, S., and Katsura, M.: Temperature dependence of
reflectance spectra and color values of hematite by in situ,
high-temperature visible micro-spectroscopy, Am. Mineral., 94, 90–97,
https://doi.org/10.2138/am.2009.2779, 2009. 
                    
                Short summary
            The use of thermal–optical analysis for the determination of elemental carbon (EC) and organic carbon (OC) can be biased by mineral dust (MD). We present a method that utilizes this interference to quantify iron contained in MD in snow samples. Possibilities and limitations of applying this method to particulate matter samples are presented. The influence of light-absorbing iron compounds in MD on the transmittance signal can be used to identify samples experiencing a bias of the OC / EC split.
            The use of thermal–optical analysis for the determination of elemental carbon (EC) and organic...