Articles | Volume 15, issue 1
https://doi.org/10.5194/amt-15-61-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-61-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Biomass burning aerosol heating rates from the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) 2016 and 2017 experiments
Sabrina P. Cochrane
CORRESPONDING AUTHOR
Department of Atmospheric and Oceanic Sciences, University of
Colorado Boulder, Boulder, CO 80303, USA
Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, CO 80303, USA
K. Sebastian Schmidt
Department of Atmospheric and Oceanic Sciences, University of
Colorado Boulder, Boulder, CO 80303, USA
Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, CO 80303, USA
Hong Chen
Department of Atmospheric and Oceanic Sciences, University of
Colorado Boulder, Boulder, CO 80303, USA
Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, CO 80303, USA
Peter Pilewskie
Department of Atmospheric and Oceanic Sciences, University of
Colorado Boulder, Boulder, CO 80303, USA
Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, CO 80303, USA
Scott Kittelman
Department of Atmospheric and Oceanic Sciences, University of
Colorado Boulder, Boulder, CO 80303, USA
Jens Redemann
School of Meteorology, University of Oklahoma, Norman, OK 73019, USA
Samuel LeBlanc
Bay Area Environmental Research Institute, Mountain View, CA 94035, USA
NASA Ames Research Center, Mountain View, CA 94035, USA
Kristina Pistone
Bay Area Environmental Research Institute, Mountain View, CA 94035, USA
NASA Ames Research Center, Mountain View, CA 94035, USA
Michal Segal Rozenhaimer
Bay Area Environmental Research Institute, Mountain View, CA 94035, USA
NASA Ames Research Center, Mountain View, CA 94035, USA
Department of Geophysics, Porter School of the
Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
Meloë Kacenelenbogen
NASA Ames Research Center, Mountain View, CA 94035, USA
Yohei Shinozuka
NASA Ames Research Center, Mountain View, CA 94035, USA
Universities Space Research Association, Columbia, MD 21046, USA
Connor Flynn
School of Meteorology, University of Oklahoma, Norman, OK 73019, USA
Rich Ferrare
NASA Langley Research Center, Hampton, VA 23666, USA
Sharon Burton
NASA Langley Research Center, Hampton, VA 23666, USA
Chris Hostetler
NASA Langley Research Center, Hampton, VA 23666, USA
Marc Mallet
Centre National de Recherches Météorologiques, UMR 3589,
Météo-France, CNRS, Toulouse, France
Paquita Zuidema
Department of Atmospheric Sciences, Rosenstiel School of Marine and
Atmospheric Science, University of Miami, Miami, FL 33149, USA
Viewed
Total article views: 2,433 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 22 Jun 2021)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,662 | 685 | 86 | 2,433 | 67 | 94 |
- HTML: 1,662
- PDF: 685
- XML: 86
- Total: 2,433
- BibTeX: 67
- EndNote: 94
Total article views: 1,563 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 05 Jan 2022)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,101 | 395 | 67 | 1,563 | 62 | 59 |
- HTML: 1,101
- PDF: 395
- XML: 67
- Total: 1,563
- BibTeX: 62
- EndNote: 59
Total article views: 870 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 22 Jun 2021)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
561 | 290 | 19 | 870 | 5 | 35 |
- HTML: 561
- PDF: 290
- XML: 19
- Total: 870
- BibTeX: 5
- EndNote: 35
Viewed (geographical distribution)
Total article views: 2,433 (including HTML, PDF, and XML)
Thereof 2,209 with geography defined
and 224 with unknown origin.
Total article views: 1,563 (including HTML, PDF, and XML)
Thereof 1,415 with geography defined
and 148 with unknown origin.
Total article views: 870 (including HTML, PDF, and XML)
Thereof 794 with geography defined
and 76 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
8 citations as recorded by crossref.
- Shortwave Array Spectroradiometer-Hemispheric (SAS-He): design and evaluation E. Kassianov et al. 10.5194/amt-17-4997-2024
- A meteorological overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign over the southeastern Atlantic during 2016–2018: Part 2 – Daily and synoptic characteristics J. Ryoo et al. 10.5194/acp-22-14209-2022
- Spectral Aerosol Radiative Forcing and Efficiency of the La Palma Volcanic Plume over the Izaña Observatory R. García et al. 10.3390/rs15010173
- Acceleration of the southern African easterly jet driven by the radiative effect of biomass burning aerosols and its impact on transport during AEROCLO-sA J. Chaboureau et al. 10.5194/acp-22-8639-2022
- Vertical structure of a springtime smoky and humid troposphere over the southeast Atlantic from aircraft and reanalysis K. Pistone et al. 10.5194/acp-24-7983-2024
- Impact of biomass burning aerosols (BBA) on the tropical African climate in an ocean–atmosphere–aerosol coupled climate model M. Mallet et al. 10.5194/acp-24-12509-2024
- In situ and satellite-based estimates of cloud properties and aerosol–cloud interactions over the southeast Atlantic Ocean S. Gupta et al. 10.5194/acp-22-12923-2022
- A new look into the impacts of dust radiative effects on the energetics of tropical easterly waves F. Hosseinpour & E. Wilcox 10.5194/acp-24-707-2024
8 citations as recorded by crossref.
- Shortwave Array Spectroradiometer-Hemispheric (SAS-He): design and evaluation E. Kassianov et al. 10.5194/amt-17-4997-2024
- A meteorological overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign over the southeastern Atlantic during 2016–2018: Part 2 – Daily and synoptic characteristics J. Ryoo et al. 10.5194/acp-22-14209-2022
- Spectral Aerosol Radiative Forcing and Efficiency of the La Palma Volcanic Plume over the Izaña Observatory R. García et al. 10.3390/rs15010173
- Acceleration of the southern African easterly jet driven by the radiative effect of biomass burning aerosols and its impact on transport during AEROCLO-sA J. Chaboureau et al. 10.5194/acp-22-8639-2022
- Vertical structure of a springtime smoky and humid troposphere over the southeast Atlantic from aircraft and reanalysis K. Pistone et al. 10.5194/acp-24-7983-2024
- Impact of biomass burning aerosols (BBA) on the tropical African climate in an ocean–atmosphere–aerosol coupled climate model M. Mallet et al. 10.5194/acp-24-12509-2024
- In situ and satellite-based estimates of cloud properties and aerosol–cloud interactions over the southeast Atlantic Ocean S. Gupta et al. 10.5194/acp-22-12923-2022
- A new look into the impacts of dust radiative effects on the energetics of tropical easterly waves F. Hosseinpour & E. Wilcox 10.5194/acp-24-707-2024
Latest update: 23 Nov 2024
Short summary
This work presents heating rates derived from aircraft observations from the 2016 and 2017 field campaigns of ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS). We separate the total heating rates into aerosol and gas (primarily water vapor) absorption and explore some of the co-variability of heating rate profiles and their primary drivers, leading to the development of a new concept: the heating rate efficiency (HRE; the heating rate per unit aerosol extinction).
This work presents heating rates derived from aircraft observations from the 2016 and 2017 field...