Articles | Volume 16, issue 4
https://doi.org/10.5194/amt-16-1061-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-16-1061-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Development of an International System of Units (SI)-traceable transmission curve reference material to improve the quantitation and comparability of proton-transfer-reaction mass-spectrometry measurements
National Physical Laboratory, Hampton Road, Teddington, TW11 0LW,
United Kingdom
Sergi Moreno
National Physical Laboratory, Hampton Road, Teddington, TW11 0LW,
United Kingdom
now at: World Meteorological Organization (WMO), 7bis Avenue de la
Paix, C.P. 2300, 1211, Geneva 2, Switzerland
Kieran O'Daly
National Physical Laboratory, Hampton Road, Teddington, TW11 0LW,
United Kingdom
Rupert Holzinger
Institute for Marine and Atmospheric Research, IMAU, Utrecht
University, Utrecht, the Netherlands
Related authors
Ruth E. Hill-Pearce, Aimee Hillier, Eric Mussell Webber, Kanokrat Charoenpornpukdee, Simon O'Doherty, Joachim Mohn, Christoph Zellweger, David R. Worton, and Paul J. Brewer
Atmos. Meas. Tech., 14, 5447–5458, https://doi.org/10.5194/amt-14-5447-2021, https://doi.org/10.5194/amt-14-5447-2021, 2021
Short summary
Short summary
There is currently a need for gas reference materials with well-characterised delta values for monitoring N2O amount fractions. We present work towards the preparation of gas reference materials for calibration of in-field monitoring equipment, which target the WMO-GAW data quality objectives for comparability of amount fraction and demonstrate the stability of δ15Nα, δ15Nβ and δ18O values with pressure and effects of cylinder passivation.
Peng Yao, Rupert Holzinger, Beatriz Sayuri Oyama, Agne Masalaite, Dipayan Paul, Haiyan Ni, Hanne Noto, Dušan Materić, Maria de Fátima Andrade, Ru-Jin Huang, and Ulrike Dusek
EGUsphere, https://doi.org/10.5194/egusphere-2025-5655, https://doi.org/10.5194/egusphere-2025-5655, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We identify a previously unrecognized class of synthetic organic compounds, large molecular methylsiloxanes, in ambient aerosols across diverse environments in three countries. These compounds are present at substantial levels, primarily originating from traffic emissions related to engine lubrication. Their high abundance and significant daily human exposure suggest potential, yet still poorly understood, implications for both health and climate.
Farhan R. Nursanto, Douglas A. Day, Roy Meinen, Rupert Holzinger, Harald Saathoff, Jinglan Fu, Jan Mulder, Ulrike Dusek, and Juliane L. Fry
Atmos. Meas. Tech., 18, 3051–3072, https://doi.org/10.5194/amt-18-3051-2025, https://doi.org/10.5194/amt-18-3051-2025, 2025
Short summary
Short summary
It is of increasing importance to monitor nitrate pollution that can harm ecosystems. However, commonly used aerosol monitoring equipment cannot distinguish inorganic from organic forms of nitrate, which may have different consequences for the environment. We describe a method to differentiate types of nitrates that can be applied to ambient monitoring to improve understanding of its formation and impact.
Maitane Iturrate-Garcia, Thérèse Salameh, Paul Schlauri, Annarita Baldan, Martin K. Vollmer, Evdokia Stratigou, Sebastien Dusanter, Jianrong Li, Stefan Persijn, Anja Claude, Rupert Holzinger, Christophe Sutour, Tatiana Macé, Yasin Elshorbany, Andreas Ackermann, Céline Pascale, and Stefan Reimann
Atmos. Meas. Tech., 18, 371–403, https://doi.org/10.5194/amt-18-371-2025, https://doi.org/10.5194/amt-18-371-2025, 2025
Short summary
Short summary
Accurate and comparable measurements of oxygenated organic compounds (OVOCs) are crucial in assessing tropospheric ozone burdens and trends. However, the monitoring of many OVOCs remains challenging because of their low atmospheric abundance and lack of stable and traceable calibration standards. This paper describes the calibration standards developed for OVOCs at a low amount of substance fractions (<100 nmol mol-1) to transfer traceability of the International System of Units to the field.
Dene Bowdalo, Sara Basart, Marc Guevara, Oriol Jorba, Carlos Pérez García-Pando, Monica Jaimes Palomera, Olivia Rivera Hernandez, Melissa Puchalski, David Gay, Jörg Klausen, Sergio Moreno, Stoyka Netcheva, and Oksana Tarasova
Earth Syst. Sci. Data, 16, 4417–4495, https://doi.org/10.5194/essd-16-4417-2024, https://doi.org/10.5194/essd-16-4417-2024, 2024
Short summary
Short summary
GHOST (Globally Harmonised Observations in Space and Time) represents one of the biggest collections of harmonised measurements of atmospheric composition at the surface. In total, 7 275 148 646 measurements from 1970 to 2023, from 227 different components, and from 38 reporting networks are compiled, parsed, and standardised. Components processed include gaseous species, total and speciated particulate matter, and aerosol optical properties.
Farhan R. Nursanto, Roy Meinen, Rupert Holzinger, Maarten C. Krol, Xinya Liu, Ulrike Dusek, Bas Henzing, and Juliane L. Fry
Atmos. Chem. Phys., 23, 10015–10034, https://doi.org/10.5194/acp-23-10015-2023, https://doi.org/10.5194/acp-23-10015-2023, 2023
Short summary
Short summary
Particulate matter (PM) is a harmful air pollutant that depends on the complex mixture of natural and anthropogenic emissions into the atmosphere. Thus, in different regions and seasons, the way that PM is formed and grows can differ. In this study, we use a combined statistical analysis of the chemical composition and particle size distribution to determine what drives particle formation and growth across seasons, using varying wind directions to elucidate the role of different sources.
Rupert Holzinger, Oliver Eppers, Kouji Adachi, Heiko Bozem, Markus Hartmann, Andreas Herber, Makoto Koike, Dylan B. Millet, Nobuhiro Moteki, Sho Ohata, Frank Stratmann, and Atsushi Yoshida
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-95, https://doi.org/10.5194/acp-2022-95, 2022
Revised manuscript not accepted
Short summary
Short summary
In spring 2018 the research aircraft Polar 5 conducted flights in the Arctic atmosphere. The flight operation was from Station Nord in Greenland, 1700 km north of the Arctic Circle (81°43'N, 17°47'W). Using a mass spectrometer we measured more than 100 organic compounds in the air. We found a clear signature of natural organic compounds that are transported from forests to the high Arctic. These compounds have the potential to change the cloud cover and energy budget of the Arctic region.
Ruth E. Hill-Pearce, Aimee Hillier, Eric Mussell Webber, Kanokrat Charoenpornpukdee, Simon O'Doherty, Joachim Mohn, Christoph Zellweger, David R. Worton, and Paul J. Brewer
Atmos. Meas. Tech., 14, 5447–5458, https://doi.org/10.5194/amt-14-5447-2021, https://doi.org/10.5194/amt-14-5447-2021, 2021
Short summary
Short summary
There is currently a need for gas reference materials with well-characterised delta values for monitoring N2O amount fractions. We present work towards the preparation of gas reference materials for calibration of in-field monitoring equipment, which target the WMO-GAW data quality objectives for comparability of amount fraction and demonstrate the stability of δ15Nα, δ15Nβ and δ18O values with pressure and effects of cylinder passivation.
Jakob B. Pernov, Rossana Bossi, Thibaut Lebourgeois, Jacob K. Nøjgaard, Rupert Holzinger, Jens L. Hjorth, and Henrik Skov
Atmos. Chem. Phys., 21, 2895–2916, https://doi.org/10.5194/acp-21-2895-2021, https://doi.org/10.5194/acp-21-2895-2021, 2021
Short summary
Short summary
Volatile organic compounds (VOCs) are an important constituent in the Arctic atmosphere due to their effect on aerosol and ozone formation. However, an understanding of their sources is lacking. This research presents a multiseason high-time-resolution dataset of VOCs in the Arctic and details their temporal characteristics and source apportionment. Four sources were identified: biomass burning, marine cryosphere, background, and Arctic haze.
Cited articles
Allen, N. D. C., Worton, D. R., Brewer, P. J., Pascale, C., and Niederhauser, B.: The importance of cylinder passivation for preparation and long-term stability of multicomponent monoterpene primary reference materials, Atmos. Meas. Tech., 11, 6429–6438, https://doi.org/10.5194/amt-11-6429-2018, 2018.
Ammann, C., Spirig, C., Neftel, A., Steinbacher, M., Komenda, M., and
Schaub, A.: Application of PTR-MS for measurements of biogenic VOC in a
deciduous forest, Int. J. Mass Spectrom., 239, 87–101,
https://doi.org/10.1016/j.ijms.2004.08.012, 2004.
Beauchamp, J., Herbig, J., Dunkl, J., Singer, W., and Hansel, A.: On the
performance of proton-transfer-reaction mass spectrometry for
breath-relevant gas matrices, Meas. Sci. Technol., 24,
125003, https://doi.org/10.1088/0957-0233/24/12/125003, 2013.
Biasioli, F., Gasperi, F., Yeretzian, C., and Märk, T. D.: PTR-MS
monitoring of VOCs and BVOCs in food science and technology,
TrAC-Trend. Anal. Chem., 30, 968–977, https://doi.org/10.1016/j.trac.2011.03.009, 2011.
Blake, R. S., Monks, P. S., and Ellis, A. M.: Proton-Transfer Reaction Mass
Spectrometry, Chem. Rev., 109, 861–896, https://doi.org/10.1021/cr800364q, 2009.
Brown, A. S., Milton, M. J. T., Brookes, C., Vargha, G. M., Downey, M. L.,
Uehara, S., Augusto, C. R., Fioravante, A. d. L., Sobrinho, D. G., Dias, F.,
Woo, J. C., Kim, B. M., Kim, J. S., Mace, T., Fükö, J. T., Qiao, H.,
Guenther, F., Rhoderick, J., Gameson, L., Botha, A., Tshilongo, J., Ntsasa,
N. G., Val'ková, M., Durisova, Z., Kustikov, Y., Konopelko, L., Fatina,
O., and Wessel, R.: Final report on CCQM-K93: Preparative comparison of
ethanol in nitrogen, Metrologia, 50, 08025–08025,
https://doi.org/10.1088/0026-1394/50/1a/08025, 2013.
Brown, R. J. C. and Milton, M. J. T.: Developments in accurate and traceable
chemical measurements, Chem. Soc. Rev., 36, 904–913,
https://doi.org/10.1039/b507452p, 2007.
Cappellin, L., Karl, T., Probst, M., Ismailova, O., Winkler, P. M.,
Soukoulis, C., Aprea, E., Märk, T. D., Gasperi, F., and Biasioli, F.: On
Quantitative Determination of Volatile Organic Compound Concentrations Using
Proton Transfer Reaction Time-of-Flight Mass Spectrometry,
Environ. Sci. Technol., 46, 2283–2290, https://doi.org/10.1021/es203985t, 2012.
Cecelski, C. E., Rhoderick, G. C., Possolo, A. M., Carney, J., Vokoun, M.,
Privoznikova, J., Lee, S., Kang, J. H., Kim, Y. D., Kim, D. H., Macé,
T., Sutour, C., Pascale, C., Ntsasa, N., Tshilongo, J., Jozela, M.,
Leshabane, N., Lekoto, G., Worton, D. R., Brewer, P. J., Farrow-Dunn, F.,
Moreno, S., Wirtz, K., Stummer, V., Konopelko, L. A., Kolobova, A. V.,
Kustikov, Y. A., Klimov, A. Y., Efremova, O. V., van Wijk, J. I. T., and
van der Veen, A. M. H.: International comparison CCQM-K10.2018: BTEX in
nitrogen at 5 nmol mol−1, Metrologia, 59, 08003, https://doi.org/10.1088/0026-1394/59/1a/08003, 2022.
de Gouw, J. and Warneke, C.: Measurements of volatile organic compounds in
the earths atmosphere using proton-transfer-reaction mass spectrometry, Mass
Spectrom. Rev., 26, 223–257, https://doi.org/10.1002/mas.20119, 2007.
de Gouw, J., Warneke, C., Karl, T., Eerdekens, G., van der Veen, C., and
Fall, R.: Sensitivity and specificity of atmospheric trace gas detection by
proton-transfer-reaction mass spectrometry, Int. J. Mass
Spectrom., 223, 365–382, https://doi.org/10.1016/s1387-3806(02)00926-0, 2003.
Grenfell, R. J. P., Brookes, C., Vargha, G., Quincey, P., Milton, M., Woods,
P. T., and Harris, P.: Euramet 886 Comparison of multi-component ambient VOC
measurements, National Physical Laboratory, 94 pp., https://eprintspublications.npl.co.uk/4306/1/AS29.pdf (last access: 20 February 2023), 2008.
Grenfell, R. J. P., Milton, M. J. T., Harling, A. M., Vargha, G. M.,
Brookes, C., Quincey, P. G., and Woods, P. T.: Standard mixtures of ambient
volatile organic compounds in synthetic and whole air with stable reference
values, J. Geophys. Res.-Atmos., 115, D14302, https://doi.org/10.1029/2009jd012933, 2010.
Hansel, A., Jordan, A., Warneke, C., Holzinger, R., Wisthaler, A., and
Lindinger, W.: Proton-transfer-reaction mass spectrometry (PTR-MS): on-line
monitoring of volatile organic compounds at volume mixing ratios of a few
pptv, Plasma Sources Sci. T., 8, 332–336,
https://doi.org/10.1088/0963-0252/8/2/314, 1999.
Holzinger, R., Lee, A., McKay, M., and Goldstein, A. H.: Seasonal variability of monoterpene emission factors for a ponderosa pine plantation in California, Atmos. Chem. Phys., 6, 1267–1274, https://doi.org/10.5194/acp-6-1267-2006, 2006.
Holzinger, R., Acton, W. J. F., Bloss, W. J., Breitenlechner, M., Crilley, L. R., Dusanter, S., Gonin, M., Gros, V., Keutsch, F. N., Kiendler-Scharr, A., Kramer, L. J., Krechmer, J. E., Languille, B., Locoge, N., Lopez-Hilfiker, F., Materić, D., Moreno, S., Nemitz, E., Quéléver, L. L. J., Sarda Esteve, R., Sauvage, S., Schallhart, S., Sommariva, R., Tillmann, R., Wedel, S., Worton, D. R., Xu, K., and Zaytsev, A.: Validity and limitations of simple reaction kinetics to calculate concentrations of organic compounds from ion counts in PTR-MS, Atmos. Meas. Tech., 12, 6193–6208, https://doi.org/10.5194/amt-12-6193-2019, 2019.
ISO: 6142-1:2015 Gas analysis – Preparation of calibration gas mixtures –
Gravimetric method for class I mixtures, International Organization for
Standardisation (ISO), Geneva, Switzerland, 39 pp., https://www.iso.org/standard/59631.html (last access: 20 February 2023), 2015.
ISO: 19229:2019 Gas analysis – Purity analysis and the treatment of purity
data, International Organization for Standardisation (ISO), Geneva, Switzerland, 18 pp., https://www.iso.org/standard/72010.html (last access: 20 February 2023), 2019.
Lee, S., Heo, G. S., Kim, Y., Oh, S., Han, Q., Wu, H., Konopelko, L. A.,
Kustikov, Y. A., Kolobova, A. V., Efremova, O. V., Pankratov, V. V., Pavlov,
M. V., Culleton, L. P., Brown, A. S., Brookes, C., Li, J., Ziel, P. R., and
van der Veen, A. M. H.: International key comparison CCQM-K94: 10 µmol/mol dimethyl sulfide in nitrogen, Metrologia, 53, 08002,
https://doi.org/10.1088/0026-1394/53/1a/08002, 2016.
Lee, S., Kang, J. H., Kim, Y. D., Kim, D. H., Jung, J., Ma, H., Wu, H.,
Bartlett, S., Worton, D., Murugan, A., Brewer, P. J., Konopelko, L. A.,
Kolobova, A. V., Malginov, A. V., Dobryakov, Y. G., Pankratov, V. V., and
Efremova, O. V.: International comparison CCQM-K165: dimethyl sulfide in
nitrogen at 5 nmol mol−1, Metrologia, 59, 08011,
https://doi.org/10.1088/0026-1394/59/1A/08011, 2022.
Liaskos, C., Rhoderick, G., Hodges, J., Possolo, A., Goodman, C., Kim, Y.
D., Kim, D. H., Lee, S., Allen, N., Corbel, M., Worton, D., Brown, R., and
Brewer, P.: CCQM-K121 – Monoterpenes in nitrogen at 2.5 nmol mol−1 final report, Metrologia, 55,
08019, https://doi.org/10.1088/0026-1394/55/1a/08019, 2018.
Lindinger, W., Hansel, A., and Jordan, A.: On-line monitoring of volatile
organic compounds at pptv levels by means of proton-transfer-reaction mass
spectrometry (PTR-MS) medical applications, food control and environmental
research, Int. J. Mass Spectrom., 173,
191–241, https://doi.org/10.1016/S0168-1176(97)00281-4, 1998.
Müller, M., Mikoviny, T., and Wisthaler, A.: Detector aging induced mass
discrimination and non-linearity effects in PTR-ToF-MS, Int.
J. Mass Spectrom., 365–366, 93–97, https://doi.org/10.1016/j.ijms.2013.12.008, 2014.
Park, J.-H., Goldstein, A. H., Timkovsky, J., Fares, S., Weber, R., Karlik, J., and Holzinger, R.: Eddy covariance emission and deposition flux measurements using proton transfer reaction – time of flight – mass spectrometry (PTR-TOF-MS): comparison with PTR-MS measured vertical gradients and fluxes, Atmos. Chem. Phys., 13, 1439–1456, https://doi.org/10.5194/acp-13-1439-2013, 2013.
Rhoderick, G. C.: Stability assessment of gas mixtures containing terpenes
at nominal 5 nmol/mol contained in treated aluminum gas cylinders,
Anal. Bioanal. Chem., 398, 1417–1425,
https://doi.org/10.1007/s00216-010-4058-0, 2010.
Rhoderick, G. C. and Lin, J.: Stability Assessment of Gas Mixtures
Containing Monoterpenes in Varying Cylinder Materials and Treatments,
Anal. Chem., 85, 4675–4685, https://doi.org/10.1021/ac400324v, 2013.
Rhoderick, G. C., Cecelski, C. E., Miller, W. R., Worton, D. R., Moreno, S.,
Brewer, P. J., Viallon, J., Idrees, F., Moussay, P., Kim, Y. D., Kim, D.,
Lee, S., Baldan, A., and Li, J.: Stability of gaseous volatile organic
compounds contained in gas cylinders with different internal wall
treatments, Elementa-Sci. Anthrop., 7, 22, https://doi.org/10.1525/elementa.366, 2019.
Snedecor, G. W. and Cochran, W. G.: Statistical methods, Iowa State
University Press, 593 pp., ISBN 9780813815602, 1989.
Steinbacher, M., Dommen, J., Ammann, C., Spirig, C., Neftel, A., and Prevot,
A. S. H.: Performance characteristics of a proton-transfer-reaction mass
spectrometer (PTR-MS) derived from laboratory and field measurements,
Int. J. Mass Spectrom., 239, 117–128, https://doi.org/10.1016/j.ijms.2004.07.015, 2004.
Taipale, R., Ruuskanen, T. M., Rinne, J., Kajos, M. K., Hakola, H., Pohja, T., and Kulmala, M.: Technical Note: Quantitative long-term measurements of VOC concentrations by PTR-MS – measurement, calibration, and volume mixing ratio calculation methods, Atmos. Chem. Phys., 8, 6681–6698, https://doi.org/10.5194/acp-8-6681-2008, 2008.
van der Veen, A. M. H., de Krom, I., Nieuwenkamp, G., Culleton, L. P.,
Worton, D. R., and Allden, J.: Bilateral comparison VSL-NPL on primary gas
standards for the siloxane content in biomethane, Research Square, 26 pp., https://doi.org/10.21203/rs.3.rs-2598788/v1, 2023.
van der Veen, A. M. H., van der Hout, J. W., Ziel, P. R., Oudwater, R. J.,
Fioravante, A. L., Augusto, C. R., Brum, M. C., Uehara, S., Akima, D., Bae,
H. K., Kang, N., Woo, J.-C., Liaskos, C. E., Rhoderick, G. C., Jozela, M.,
Tshilongo, J., Ntsasa, N. G., Botha, A., Brewer, P. J., Brown, A. S.,
Bartlett, S., Downey, M. L., Konopelko, L. A., Kolobova, A. V., Pankov, A.
A., Orshanskaya, A. A., and Efremova, O. V.: International comparison
CCQM-K111 – propane in nitrogen, Metrologia, 54, 08009,
https://doi.org/10.1088/0026-1394/54/1a/08009, 2017.
Worton, D. R., Moreno, S., Brewer, P. J., Li, J., Baldan, A., and van der
Veen, A. M. H.: Bilateral comparison of primary reference materials (PRMs)
containing methanol, ethanol and acetone in nitrogen, Accredit.
Qual. Assur., 27, 265–274, https://doi.org/10.1007/s00769-022-01513-y, 2022.
Yuan, B., Koss, A. R., Warneke, C., Coggon, M., Sekimoto, K., and de Gouw,
J. A.: Proton-Transfer-Reaction Mass Spectrometry: Applications in
Atmospheric Sciences, Chem. Rev., 117, 13187–13229,
https://doi.org/10.1021/acs.chemrev.7b00325, 2017.
Zar, J. H.: Biostatistical Analysis, 4th, Prentice Hall, Englewood Cliffs,
New Jersey, 718 pp., ISBN 9788126551385, 1999.
Zhao, J. and Zhang, R.: Proton transfer reaction rate constants between
hydronium ion (H3O+) and volatile organic compounds, Atmos.
Environ., 38, 2177–2185, https://doi.org/10.1016/j.atmosenv.2004.01.019, 2004.
Short summary
Proton-transfer-reaction mass spectrometry is widely used in the environmental, health, and food and beverage sectors. As a result, there is a need for accurate and comparable measurements. In this work we have developed a 20-component gravimetrically prepared traceable primary reference material (gas standard in a high-pressure cylinder) to enable quantitative and comparable measurements. The accuracy of all components was better than 3 %–10 % with stabilities of better than 1–2 years.
Proton-transfer-reaction mass spectrometry is widely used in the environmental, health, and food...