Articles | Volume 16, issue 3
https://doi.org/10.5194/amt-16-745-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-16-745-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The CALIPSO version 4.5 stratospheric aerosol subtyping algorithm
Jason L. Tackett
CORRESPONDING AUTHOR
NASA Langley Research Center, Hampton, VA, USA
Jayanta Kar
Science Systems and Applications, Inc., Hampton, VA, USA
Mark A. Vaughan
NASA Langley Research Center, Hampton, VA, USA
Brian J. Getzewich
NASA Langley Research Center, Hampton, VA, USA
Man-Hae Kim
School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea
Jean-Paul Vernier
National Institute of Aerospace Associates, Hampton, VA, USA
Ali H. Omar
NASA Langley Research Center, Hampton, VA, USA
Brian E. Magill
Science Systems and Applications, Inc., Hampton, VA, USA
Michael C. Pitts
NASA Langley Research Center, Hampton, VA, USA
David M. Winker
NASA Langley Research Center, Hampton, VA, USA
Related authors
Jayanta Kar, Mark A. Vaughan, Robert P. Damadeo, Mahesh Kovilakam, Jason L. Tackett, and Charles R. Trepte
EGUsphere, https://doi.org/10.5194/egusphere-2025-3141, https://doi.org/10.5194/egusphere-2025-3141, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
This paper assesses a possible bias in calibration of the spaceborne CALIOP lidar signals at 1064 nm resulting from relative attenuation of the signals at 1064 nm and 532 nm due to stratospheric aerosols. Multi-channel aerosol measurements from SAGE III instrument on ISS indicate that the bias is less than 1–2 % for background conditions and up to 5 % for strong stratospheric loading. Implications for extinction retrievals at 1064 nm and cascading errors for multi-layer scenes are discussed.
Travis Toth, Gregory Schuster, Marian Clayton, Zhujun Li, David Painemal, Sharon Rodier, Jayanta Kar, Tyler Thorsen, Richard Ferrare, Mark Vaughan, Jason Tackett, Huisheng Bian, Mian Chin, Anne Garnier, Ellsworth Welton, Robert Ryan, Charles Trepte, and David Winker
EGUsphere, https://doi.org/10.5194/egusphere-2025-2832, https://doi.org/10.5194/egusphere-2025-2832, 2025
Short summary
Short summary
NASA’s CALIPSO satellite mission observed aerosols (airborne particles) globally from 2006 to 2023. Its final data products update improves its aerosol optical parameters over oceans by adjusting for regional and seasonal differences in a new measurement-model synergistic approach. This results in a more realistic aerosol characterization, specifically near coastlines (where sea salt mixes with pollution), with potential impacts to future studies of science applications (e.g., climate effects).
Jason L. Tackett, Robert A. Ryan, Anne E. Garnier, Jayanta Kar, Brian J. Getzewich, Xia Cai, Mark A. Vaughan, Charles R. Trepte, Ron C. Verhappen, David M. Winker, and Kam-Pui A. Lee
EGUsphere, https://doi.org/10.5194/egusphere-2025-2376, https://doi.org/10.5194/egusphere-2025-2376, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
The spaceborne atmospheric lidar CALIOP experienced an increasing number of intermittent low energy laser pulses in the final seven years of the 17-year long CALIPSO mission. Low energy pulses degraded the quality of retrievals in affected profiles. This paper describes low energy mitigation (LEM) algorithms that remove affected data and minimize data loss. LEM is demonstrated to correct calibration biases, reduce false feature detections, and restore the integrity of the CALIOP data record.
Hongyu Liu, Bo Zhang, Richard H. Moore, Luke D. Ziemba, Richard A. Ferrare, Hyundeok Choi, Armin Sorooshian, David Painemal, Hailong Wang, Michael A. Shook, Amy Jo Scarino, Johnathan W. Hair, Ewan C. Crosbie, Marta A. Fenn, Taylor J. Shingler, Chris A. Hostetler, Gao Chen, Mary M. Kleb, Gan Luo, Fangqun Yu, Mark A. Vaughan, Yongxiang Hu, Glenn S. Diskin, John B. Nowak, Joshua P. DiGangi, Yonghoon Choi, Christoph A. Keller, and Matthew S. Johnson
Atmos. Chem. Phys., 25, 2087–2121, https://doi.org/10.5194/acp-25-2087-2025, https://doi.org/10.5194/acp-25-2087-2025, 2025
Short summary
Short summary
We use the GEOS-Chem model to simulate aerosol distributions and properties over the western North Atlantic Ocean (WNAO) during the winter and summer deployments in 2020 of the NASA ACTIVATE mission. Model results are evaluated against aircraft, ground-based, and satellite observations. The improved understanding of life cycle, composition, transport pathways, and distribution of aerosols has important implications for characterizing aerosol–cloud–meteorology interactions over WNAO.
Robert A. Ryan, Mark A. Vaughan, Sharon D. Rodier, Jason L. Tackett, John A. Reagan, Richard A. Ferrare, Johnathan W. Hair, John A. Smith, and Brian J. Getzewich
Atmos. Meas. Tech., 17, 6517–6545, https://doi.org/10.5194/amt-17-6517-2024, https://doi.org/10.5194/amt-17-6517-2024, 2024
Short summary
Short summary
We introduce Ocean Derived Column Optical Depth (ODCOD), a new way to estimate column optical depths using Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements from the ocean surface. ODCOD estimates include contributions from particulates in the full column, which CALIOP estimates do not, making it a complement measurement to CALIOP’s standard estimates. We find that ODCOD compares well with other established data sets in the daytime but tends to estimate higher at night.
Travis N. Knepp, Larry Thomason, Mahesh Kovilakam, Jason Tackett, Jayanta Kar, Robert Damadeo, and David Flittner
Atmos. Meas. Tech., 15, 5235–5260, https://doi.org/10.5194/amt-15-5235-2022, https://doi.org/10.5194/amt-15-5235-2022, 2022
Short summary
Short summary
We used aerosol profiles from the SAGE III/ISS instrument to develop an aerosol classification method that was tested on four case-study events (two volcanic, two fire) and supported with CALIOP aerosol products. The method worked well in identifying smoke and volcanic aerosol in the stratosphere for these events. Raikoke is presented as a demonstration of the limitations of this method.
Jayanta Kar, Mark A. Vaughan, Robert P. Damadeo, Mahesh Kovilakam, Jason L. Tackett, and Charles R. Trepte
EGUsphere, https://doi.org/10.5194/egusphere-2025-3141, https://doi.org/10.5194/egusphere-2025-3141, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
This paper assesses a possible bias in calibration of the spaceborne CALIOP lidar signals at 1064 nm resulting from relative attenuation of the signals at 1064 nm and 532 nm due to stratospheric aerosols. Multi-channel aerosol measurements from SAGE III instrument on ISS indicate that the bias is less than 1–2 % for background conditions and up to 5 % for strong stratospheric loading. Implications for extinction retrievals at 1064 nm and cascading errors for multi-layer scenes are discussed.
Corinna Kloss, Gwenaël Berthet, Pasquale Sellitto, Irene Bartolome Garcia, Emmanuel Briaud, Rubel Chandra Das, Stéphane Chevrier, Nicolas Dumelié, Lilian Joly, Thomas Lecas, Pauline Marbach, Felix Ploeger, Jean-Baptiste Renard, Jean-Paul Vernier, Frank G. Wienhold, and Michaela I. Hegglin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2091, https://doi.org/10.5194/egusphere-2025-2091, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
In October 2022, we detected volcanic particles in the stratosphere over France, linked to the January 2022 Hunga eruption in the South Pacific. Found between 17 and 23 km altitude, they were traced back to the tropics using trajectory simulations and satellite data. Their optical properties matched those in the Southern Hemisphere. The particles spread across the Northern Hemisphere, reflecting sunlight and slightly cooling the surface—a small but non-negligible effect.
Travis Toth, Gregory Schuster, Marian Clayton, Zhujun Li, David Painemal, Sharon Rodier, Jayanta Kar, Tyler Thorsen, Richard Ferrare, Mark Vaughan, Jason Tackett, Huisheng Bian, Mian Chin, Anne Garnier, Ellsworth Welton, Robert Ryan, Charles Trepte, and David Winker
EGUsphere, https://doi.org/10.5194/egusphere-2025-2832, https://doi.org/10.5194/egusphere-2025-2832, 2025
Short summary
Short summary
NASA’s CALIPSO satellite mission observed aerosols (airborne particles) globally from 2006 to 2023. Its final data products update improves its aerosol optical parameters over oceans by adjusting for regional and seasonal differences in a new measurement-model synergistic approach. This results in a more realistic aerosol characterization, specifically near coastlines (where sea salt mixes with pollution), with potential impacts to future studies of science applications (e.g., climate effects).
Jason L. Tackett, Robert A. Ryan, Anne E. Garnier, Jayanta Kar, Brian J. Getzewich, Xia Cai, Mark A. Vaughan, Charles R. Trepte, Ron C. Verhappen, David M. Winker, and Kam-Pui A. Lee
EGUsphere, https://doi.org/10.5194/egusphere-2025-2376, https://doi.org/10.5194/egusphere-2025-2376, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
The spaceborne atmospheric lidar CALIOP experienced an increasing number of intermittent low energy laser pulses in the final seven years of the 17-year long CALIPSO mission. Low energy pulses degraded the quality of retrievals in affected profiles. This paper describes low energy mitigation (LEM) algorithms that remove affected data and minimize data loss. LEM is demonstrated to correct calibration biases, reduce false feature detections, and restore the integrity of the CALIOP data record.
Meloë S. F. Kacenelenbogen, Ralph Kuehn, Nandana Amarasinghe, Kerry Meyer, Edward Nowottnick, Mark Vaughan, Hong Chen, Sebastian Schmidt, Richard Ferrare, John Hair, Robert Levy, Hongbin Yu, Paquita Zuidema, Robert Holz, and Willem Marais
EGUsphere, https://doi.org/10.5194/egusphere-2025-1403, https://doi.org/10.5194/egusphere-2025-1403, 2025
Short summary
Short summary
Aerosols perturb the radiation balance of the Earth-atmosphere system. To reduce the uncertainty in quantifying present-day climate change, we combine two satellite sensors and a model to assess the aerosol effects on radiation in all-sky conditions. Satellite-based and coincident aircraft measurements of aerosol radiative effects agree well over the Southeast Atlantic. This constitutes a crucial first evaluation before we apply our method to more years and regions of the world.
Hongyu Liu, Bo Zhang, Richard H. Moore, Luke D. Ziemba, Richard A. Ferrare, Hyundeok Choi, Armin Sorooshian, David Painemal, Hailong Wang, Michael A. Shook, Amy Jo Scarino, Johnathan W. Hair, Ewan C. Crosbie, Marta A. Fenn, Taylor J. Shingler, Chris A. Hostetler, Gao Chen, Mary M. Kleb, Gan Luo, Fangqun Yu, Mark A. Vaughan, Yongxiang Hu, Glenn S. Diskin, John B. Nowak, Joshua P. DiGangi, Yonghoon Choi, Christoph A. Keller, and Matthew S. Johnson
Atmos. Chem. Phys., 25, 2087–2121, https://doi.org/10.5194/acp-25-2087-2025, https://doi.org/10.5194/acp-25-2087-2025, 2025
Short summary
Short summary
We use the GEOS-Chem model to simulate aerosol distributions and properties over the western North Atlantic Ocean (WNAO) during the winter and summer deployments in 2020 of the NASA ACTIVATE mission. Model results are evaluated against aircraft, ground-based, and satellite observations. The improved understanding of life cycle, composition, transport pathways, and distribution of aerosols has important implications for characterizing aerosol–cloud–meteorology interactions over WNAO.
Robert A. Ryan, Mark A. Vaughan, Sharon D. Rodier, Jason L. Tackett, John A. Reagan, Richard A. Ferrare, Johnathan W. Hair, John A. Smith, and Brian J. Getzewich
Atmos. Meas. Tech., 17, 6517–6545, https://doi.org/10.5194/amt-17-6517-2024, https://doi.org/10.5194/amt-17-6517-2024, 2024
Short summary
Short summary
We introduce Ocean Derived Column Optical Depth (ODCOD), a new way to estimate column optical depths using Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements from the ocean surface. ODCOD estimates include contributions from particulates in the full column, which CALIOP estimates do not, making it a complement measurement to CALIOP’s standard estimates. We find that ODCOD compares well with other established data sets in the daytime but tends to estimate higher at night.
Claire L. Ryder, Clément Bézier, Helen F. Dacre, Rory Clarkson, Vassilis Amiridis, Eleni Marinou, Emmanouil Proestakis, Zak Kipling, Angela Benedetti, Mark Parrington, Samuel Rémy, and Mark Vaughan
Nat. Hazards Earth Syst. Sci., 24, 2263–2284, https://doi.org/10.5194/nhess-24-2263-2024, https://doi.org/10.5194/nhess-24-2263-2024, 2024
Short summary
Short summary
Desert dust poses a hazard to aircraft via degradation of engine components. This has financial implications for the aviation industry and results in increased fuel burn with climate impacts. Here we quantify dust ingestion by aircraft engines at airports worldwide. We find Dubai and Delhi in summer are among the dustiest airports, where substantial engine degradation would occur after 1000 flights. Dust ingestion can be reduced by changing take-off times and the altitude of holding patterns.
David Winker, Xia Cai, Mark Vaughan, Anne Garnier, Brian Magill, Melody Avery, and Brian Getzewich
Earth Syst. Sci. Data, 16, 2831–2855, https://doi.org/10.5194/essd-16-2831-2024, https://doi.org/10.5194/essd-16-2831-2024, 2024
Short summary
Short summary
Clouds play important roles in both weather and climate. In this paper we describe version 1.0 of a unique global ice cloud data product derived from over 12 years of global spaceborne lidar measurements. This monthly gridded product provides a unique vertically resolved characterization of the occurrence and properties, optical and physical, of thin ice clouds and the tops of deep convective clouds. It should provide significant value for cloud research and model evaluation.
Piyushkumar N. Patel, Jonathan H. Jiang, Ritesh Gautam, Harish Gadhavi, Olga Kalashnikova, Michael J. Garay, Lan Gao, Feng Xu, and Ali Omar
Atmos. Chem. Phys., 24, 2861–2883, https://doi.org/10.5194/acp-24-2861-2024, https://doi.org/10.5194/acp-24-2861-2024, 2024
Short summary
Short summary
Global measurements of cloud condensation nuclei (CCN) are essential for understanding aerosol–cloud interactions and predicting climate change. To address this gap, we introduced a remote sensing algorithm that retrieves vertically resolved CCN number concentrations from airborne and spaceborne lidar systems. This innovation offers a global distribution of CCN concentrations from space, facilitating model evaluation and precise quantification of aerosol climate forcing.
Yaowei Li, Corey Pedersen, John Dykema, Jean-Paul Vernier, Sandro Vattioni, Amit Kumar Pandit, Andrea Stenke, Elizabeth Asher, Troy Thornberry, Michael A. Todt, Thao Paul Bui, Jonathan Dean-Day, and Frank N. Keutsch
Atmos. Chem. Phys., 23, 15351–15364, https://doi.org/10.5194/acp-23-15351-2023, https://doi.org/10.5194/acp-23-15351-2023, 2023
Short summary
Short summary
In 2021, the eruption of La Soufrière released sulfur dioxide into the stratosphere, resulting in a spread of volcanic aerosol over the Northern Hemisphere. We conducted extensive aircraft and balloon-borne measurements after that, revealing enhanced particle concentration and altered size distribution due to the eruption. The eruption's impact on ozone depletion was minimal, contributing ~0.6 %, and its global radiative forcing effect was modest, mainly affecting tropical and midlatitude areas.
Marine Bonazzola, Hélène Chepfer, Po-Lun Ma, Johannes Quaas, David M. Winker, Artem Feofilov, and Nick Schutgens
Geosci. Model Dev., 16, 1359–1377, https://doi.org/10.5194/gmd-16-1359-2023, https://doi.org/10.5194/gmd-16-1359-2023, 2023
Short summary
Short summary
Aerosol has a large impact on climate. Using a lidar aerosol simulator ensures consistent comparisons between modeled and observed aerosol. We present a lidar aerosol simulator that applies a cloud masking and an aerosol detection threshold. We estimate the lidar signals that would be observed at 532 nm by the Cloud-Aerosol Lidar with Orthogonal Polarization overflying the atmosphere predicted by a climate model. Our comparison at the seasonal timescale shows a discrepancy in the Southern Ocean.
Travis N. Knepp, Larry Thomason, Mahesh Kovilakam, Jason Tackett, Jayanta Kar, Robert Damadeo, and David Flittner
Atmos. Meas. Tech., 15, 5235–5260, https://doi.org/10.5194/amt-15-5235-2022, https://doi.org/10.5194/amt-15-5235-2022, 2022
Short summary
Short summary
We used aerosol profiles from the SAGE III/ISS instrument to develop an aerosol classification method that was tested on four case-study events (two volcanic, two fire) and supported with CALIOP aerosol products. The method worked well in identifying smoke and volcanic aerosol in the stratosphere for these events. Raikoke is presented as a demonstration of the limitations of this method.
Zhujun Li, David Painemal, Gregory Schuster, Marian Clayton, Richard Ferrare, Mark Vaughan, Damien Josset, Jayanta Kar, and Charles Trepte
Atmos. Meas. Tech., 15, 2745–2766, https://doi.org/10.5194/amt-15-2745-2022, https://doi.org/10.5194/amt-15-2745-2022, 2022
Short summary
Short summary
For more than 15 years, CALIPSO has revolutionized our understanding of the role of aerosols in climate. Here we evaluate CALIPSO aerosol typing over the ocean using an independent CALIPSO–CloudSat product. The analysis suggests that CALIPSO correctly categorizes clean marine aerosol over the open ocean, elevated smoke over the SE Atlantic, and dust over the tropical Atlantic. Similarities between clean and dusty marine over the open ocean implies that algorithm modifications are warranted.
Luca Bugliaro, Dennis Piontek, Stephan Kox, Marius Schmidl, Bernhard Mayer, Richard Müller, Margarita Vázquez-Navarro, Daniel M. Peters, Roy G. Grainger, Josef Gasteiger, and Jayanta Kar
Nat. Hazards Earth Syst. Sci., 22, 1029–1054, https://doi.org/10.5194/nhess-22-1029-2022, https://doi.org/10.5194/nhess-22-1029-2022, 2022
Short summary
Short summary
The monitoring of ash dispersion in the atmosphere is an important task for satellite remote sensing since ash represents a threat to air traffic. We present an AI-based method that retrieves the spatial extension and properties of volcanic ash clouds with high temporal resolution during day and night by means of geostationary satellite measurements. This algorithm, trained on realistic observations simulated with a radiative transfer model, runs operationally at the German Weather Service.
Thibault Vaillant de Guélis, Gérard Ancellet, Anne Garnier, Laurent C.-Labonnote, Jacques Pelon, Mark A. Vaughan, Zhaoyan Liu, and David M. Winker
Atmos. Meas. Tech., 15, 1931–1956, https://doi.org/10.5194/amt-15-1931-2022, https://doi.org/10.5194/amt-15-1931-2022, 2022
Short summary
Short summary
A new IIR-based cloud and aerosol discrimination (CAD) algorithm is developed using the IIR brightness temperature differences for cloud and aerosol features confidently identified by the CALIOP version 4 CAD algorithm. IIR classifications agree with the majority of V4 cloud identifications, reduce the ambiguity in a notable fraction of
not confidentV4 cloud classifications, and correct a few V4 misclassifications of cloud layers identified as dense dust or elevated smoke layers by CALIOP.
Anne Garnier, Jacques Pelon, Nicolas Pascal, Mark A. Vaughan, Philippe Dubuisson, Ping Yang, and David L. Mitchell
Atmos. Meas. Tech., 14, 3253–3276, https://doi.org/10.5194/amt-14-3253-2021, https://doi.org/10.5194/amt-14-3253-2021, 2021
Short summary
Short summary
The IIR Level 2 data products include cloud effective emissivities and cloud microphysical properties such as effective diameter (De) and ice or liquid water path estimates. This paper (Part I) describes the improvements in the V4 algorithms compared to those used in the version 3 (V3) release, while results are presented in a companion paper (Part II).
Anne Garnier, Jacques Pelon, Nicolas Pascal, Mark A. Vaughan, Philippe Dubuisson, Ping Yang, and David L. Mitchell
Atmos. Meas. Tech., 14, 3277–3299, https://doi.org/10.5194/amt-14-3277-2021, https://doi.org/10.5194/amt-14-3277-2021, 2021
Short summary
Short summary
The IIR Level 2 data products include cloud effective emissivities and cloud microphysical properties such as effective diameter (De) and ice or liquid water path estimates. This paper (Part II) shows retrievals over ocean and describes the improvements made with respect to version 3 as a result of the significant changes implemented in the version 4 algorithms, which are presented in a companion paper (Part I).
Thibault Vaillant de Guélis, Mark A. Vaughan, David M. Winker, and Zhaoyan Liu
Atmos. Meas. Tech., 14, 1593–1613, https://doi.org/10.5194/amt-14-1593-2021, https://doi.org/10.5194/amt-14-1593-2021, 2021
Short summary
Short summary
We introduce a new lidar feature detection algorithm that dramatically improves the fine details of layers identified in the CALIOP data. By applying our two-dimensional scanning technique to the measurements in all three channels, we minimize false positives while accurately identifying previously undetected features such as subvisible cirrus and the full vertical extent of dense smoke plumes. Multiple comparisons to version 4.2 CALIOP retrievals illustrate the scope of the improvements made.
Marcel Snels, Francesco Colao, Francesco Cairo, Ilir Shuli, Andrea Scoccione, Mauro De Muro, Michael Pitts, Lamont Poole, and Luca Di Liberto
Atmos. Chem. Phys., 21, 2165–2178, https://doi.org/10.5194/acp-21-2165-2021, https://doi.org/10.5194/acp-21-2165-2021, 2021
Short summary
Short summary
A total of 5 years of polar stratospheric cloud (PSC) observations by ground-based lidar at Concordia station (Antarctica) are presented. These data have been recorded in coincidence with the overpasses of the CALIOP lidar on the CALIPSO satellite. First we demonstrate that both lidars observe essentially the same thing, in terms of detection and composition of the PSCs. Then we use both datasets to study seasonal and interannual variations in the formation temperature of NAT mixtures.
Michael Steiner, Beiping Luo, Thomas Peter, Michael C. Pitts, and Andrea Stenke
Geosci. Model Dev., 14, 935–959, https://doi.org/10.5194/gmd-14-935-2021, https://doi.org/10.5194/gmd-14-935-2021, 2021
Short summary
Short summary
We evaluate polar stratospheric clouds (PSCs) as simulated by the chemistry–climate model (CCM) SOCOLv3.1 in comparison with measurements by the CALIPSO satellite. A cold bias results in an overestimated PSC area and mountain-wave ice is underestimated, but we find overall good temporal and spatial agreement of PSC occurrence and composition. This work confirms previous studies indicating that simplified PSC schemes may also achieve good approximations of the fundamental properties of PSCs.
Ghassan Taha, Robert Loughman, Tong Zhu, Larry Thomason, Jayanta Kar, Landon Rieger, and Adam Bourassa
Atmos. Meas. Tech., 14, 1015–1036, https://doi.org/10.5194/amt-14-1015-2021, https://doi.org/10.5194/amt-14-1015-2021, 2021
Short summary
Short summary
This work describes the newly released OMPS LP aerosol extinction profile multi-wavelength Version 2.0 algorithm and dataset. It is shown that the V2.0 aerosols exhibit significant improvements in OMPS LP retrieval performance in the Southern Hemisphere and at lower altitudes. The new product is compared to the SAGE III/ISS, OSIRIS and CALIPSO missions and shown to be of good quality and suitable for scientific studies.
Matthias Tesche, Peggy Achtert, and Michael C. Pitts
Atmos. Chem. Phys., 21, 505–516, https://doi.org/10.5194/acp-21-505-2021, https://doi.org/10.5194/acp-21-505-2021, 2021
Short summary
Short summary
We combine spaceborne lidar observations of clouds in the troposphere and stratosphere to assess the outcome of ground-based polar stratospheric cloud (PSC) observations that are often performed at the mercy of tropospheric clouds. We find that the outcome of ground-based lidar measurements of PSCs depends on the location of the measurement. We also provide recommendations regarding the most suitable sites in the Arctic and Antarctic.
Melody A. Avery, Robert A. Ryan, Brian J. Getzewich, Mark A. Vaughan, David M. Winker, Yongxiang Hu, Anne Garnier, Jacques Pelon, and Carolus A. Verhappen
Atmos. Meas. Tech., 13, 4539–4563, https://doi.org/10.5194/amt-13-4539-2020, https://doi.org/10.5194/amt-13-4539-2020, 2020
Short summary
Short summary
CALIOP data users will find more cloud layers detected in V4, with edges that extend further than in V3, for an increase in total atmospheric cloud volume of 6 %–9 % for high-confidence cloud phases and 1 %–2 % for all cloudy bins, including cloud fringes and unknown cloud phases. In V4 there are many fewer cloud layers identified as horizontally oriented ice, particularly in the 3° off-nadir view. Depolarization at 532 nm is the predominant parameter determining cloud thermodynamic phase.
Cited articles
Allen, D. R., Fromm, M. D., Kablick III, G. P., and Nedoluha, G. E.: Smoke
with Induced Rotation and Lofting (SWIRL) in the Stratosphere, J. Atmos.
Sci., 77, 4297–4316, https://doi.org/10.1175/JAS-D-20-0131.1, 2020.
Andersson, S. M., Martinsson, B. G., Friberg, J., Brenninkmeijer, C. A. M., Rauthe-Schöch, A., Hermann, M., van Velthoven, P. F. J., and Zahn, A.: Composition and evolution of volcanic aerosol from eruptions of Kasatochi, Sarychev and Eyjafjallajökull in 2008–2010 based on CARIBIC observations, Atmos. Chem. Phys., 13, 1781–1796, https://doi.org/10.5194/acp-13-1781-2013, 2013.
Ansmann, A., Tesche, M., Groß, S., Freudenthaler, V., Seifert, P.,
Hiebsch, A., Schmidt, J., Wandinger, U., Mattis, I., Müller, D., and
Wiegner, M.: The 16 April 2010 major volcanic ash plume over Central Europe:
EARLINET lidar and AERONET photometer observations at Leipzig and Munich,
Germany, Geophys. Res. Lett., 37, L13810, https://doi.org/10.1029/2010GL043809,
2010.
Ansmann, A., Baars, H., Chudnovsky, A., Mattis, I., Veselovskii, I., Haarig, M., Seifert, P., Engelmann, R., and Wandinger, U.: Extreme levels of Canadian wildfire smoke in the stratosphere over central Europe on 21–22 August 2017, Atmos. Chem. Phys., 18, 11831–11845, https://doi.org/10.5194/acp-18-11831-2018, 2018.
Ansmann, A., Ohneiser, K., Chudnovsky, A., Baars, H., and Engelmann, R.:
CALIPSO aerosol-typing scheme misclassified stratospheric fire smoke: case
study from the 2019 Siberian wildfire season, Front. Environ. Sci., 21,
769852, https://doi.org/10.3389/fenvs.2021.769852, 2021.
Bègue, N., Vignelles, D., Berthet, G., Portafaix, T., Payen, G., Jégou, F., Benchérif, H., Jumelet, J., Vernier, J.-P., Lurton, T., Renard, J.-B., Clarisse, L., Duverger, V., Posny, F., Metzger, J.-M., and Godin-Beekmann, S.: Long-range transport of stratospheric aerosols in the Southern Hemisphere following the 2015 Calbuco eruption, Atmos. Chem. Phys., 17, 15019–15036, https://doi.org/10.5194/acp-17-15019-2017, 2017.
Bignami, C., Corradini, S., Merucci, L., de Michele, M., Raucoules, D., de
Astis, G., Stramondo, S., and Piedra, J.: Multisensor satellite monitoring
of the 2011 Puyehue-Cordón Caulle eruption, IEEE J. Sel. Top. Appl.
Earth Obs. Remote Sens., 7, 2786–2796,
https://doi.org/10.1109/JSTARS.2014.2320638, 2014.
Boone, C., Bernath, P. F., Labelle, K., and Crouse, J.: Stratospheric Aerosol
Composition Observed by the Atmospheric Chemistry Experiment Following the
2019 Raikoke Eruption, J. Geophys. Res.-Atmos., 127, e2022JD036600,
https://doi.org/10.1029/2022JD036600, 2022.
Burton, S. P., Hair, J. W., Kahnert, M., Ferrare, R. A., Hostetler, C. A., Cook, A. L., Harper, D. B., Berkoff, T. A., Seaman, S. T., Collins, J. E., Fenn, M. A., and Rogers, R. R.: Observations of the spectral dependence of linear particle depolarization ratio of aerosols using NASA Langley airborne High Spectral Resolution Lidar, Atmos. Chem. Phys., 15, 13453–13473, https://doi.org/10.5194/acp-15-13453-2015, 2015.
Cairo, F., Di Donfrancesco, G., Adriani, A., Pulvirenti, L., and Fierli, F.:
Comparison of various linear depolarization parameters measured by lidar,
Appl. Opt., 38, 4425–4432, https://doi.org/10.1364/AO.38.004425, 1999.
CALIPSO Data Advisory Page: https://www-calipso.larc.nasa.gov/resources/calipso_users_guide/advisory.php (last access: 3 October 2022), 2018.
CALIPSO Lidar Level 1 V4.51 Data Quality Statement: https://www-calipso.larc.nasa.gov/resources/calipso_users_guide/qs/cal_lid_l1_v4-51_qs.php, last access: 3 October 2022.
Christian, K., Yorks, J., and Das, S.: Differences in the Evolution of
Pyrocumulonimbus and Volcanic Stratospheric Plumes as Observed by CATS and
CALIOP Space-Based Lidars, Atmosphere, 11, 1035,
https://doi.org/10.3390/atmos11101035, 2020.
Clarisse, L., Coheur, P.-F., Theys, N., Hurtmans, D., and Clerbaux, C.: The 2011 Nabro eruption, a SO2 plume height analysis using IASI measurements, Atmos. Chem. Phys., 14, 3095–3111, https://doi.org/10.5194/acp-14-3095-2014, 2014.
Corradini, S., Merucci, L., Prata, A. J., and Piscini, A.: Volcanic ash and
SO2 in the 2008 Kasatochi eruption: Retrievals comparison from different IR
satellite sensors, J. Geophys. Res., 115, D00L21,
https://doi.org/10.1029/2009JD013634, 2010.
de Laat, A. T. J., Stein Zweers, D. C., Boers, R., and Tuinder, O. N. E.: A
solar escalator: Observational evidence of the self-lifting of smoke and
aerosols by absorption of solar radiation in the February 2009 Australian
Black Saturday plume, J. Geophys. Res., 117, D04204,
https://doi.org/10.1029/2011JD017016, 2012.
Dirksen, R. J., Boersma, K. F., de Laat, A. T. J., Stammes, P., van der
Werf, G. R., Val Martin, M., and Kelder, H. M.: An aerosol boomerang:
rapid around-the-world transport of smoke from the December 2006 Australian
forest fires observed from space, J. Geophys. Res., 114, D21201,
https://doi.org/10.1029/2009JD012360, 2009.
Fairlie, T. D., Vernier, J.-P., Natarajan, M., and Bedka, K. M.: Dispersion of the Nabro volcanic plume and its relation to the Asian summer monsoon, Atmos. Chem. Phys., 14, 7045–7057, https://doi.org/10.5194/acp-14-7045-2014, 2014.
Fromm, M., Lindsey, D. T., Servranckx, R., Yue, G., Trickl, T., Sica, R.,
Doucet, P., and Godin-Beekmann, S. E.: The untold story of pyrocumulonimbus,
B. Am. Meteorol. Soc., 91, 1193–1209,
https://doi.org/10.1175/2010bams3004.1, 2010.
Fromm, M., Kablick III, G., Nedoluha, G., Carboni, E., Grainger, R.,
Campbell, J., and Lewis, J.: Correcting the record of volcanic stratospheric
aerosol impact: Nabro and Sarychev Peak, J. Geophys. Res.-Atmos., 119,
10343–10364, https://doi.org/10.1002/2014JD021507, 2014.
Fromm, M., Peterson D., and Di Girolamo, L.: The primary convective pathway
for observed wildfire emissions in the upper troposphere and lower
stratosphere: a targeted reinterpretation, J. Geophys. Res.-Atmos., 124,
13254–13272, https://doi.org/10.1029/2019JD031006, 2019.
Gelaro, R., McCarty, W., Suarez, M. J., Todling, R., Molod, A., Takacs, L.,
Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K.,
Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., Da
Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Markova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M.,
Schubert, S. C., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective
Analysis for Research and Applications, Version 2 (MERRA-2), J. Climate, 30,
5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Gialitaki, A., Tsekeri, A., Amiridis, V., Ceolato, R., Paulien, L., Kampouri, A., Gkikas, A., Solomos, S., Marinou, E., Haarig, M., Baars, H., Ansmann, A., Lapyonok, T., Lopatin, A., Dubovik, O., Groß, S., Wirth, M., Tsichla, M., Tsikoudi, I., and Balis, D.: Is the near-spherical shape the “new black” for smoke?, Atmos. Chem. Phys., 20, 14005–14021, https://doi.org/10.5194/acp-20-14005-2020, 2020.
Groß, S., Freudenthaler, V., Wiegner, M., Gasteiger, J., Geiß, A.,
and Schnell, F.: Dual-wavelength linear depolarization ratio of volcanic
aerosols: Lidar measurements of the Eyjafjallajökull plume over Maisach,
Germany, Atmos. Environ., 48, 85–96,
https://doi.org/10.1016/j.atmosenv.2011.06.017, 2012.
Guffanti, M., Schneider, D. J., Wallace, K. L., Hall, T., Bensimon, D. R.,
and Salinas, L. J.: Aviation response to a widely dispersed volcanic ash and
gas cloud from the August 2008 eruption of Kasatochi, Alaska, USA, J.
Geophys. Res., 115, D00L19, https://doi.org/10.1029/2010JD013868, 2010.
Haarig, M., Ansmann, A., Baars, H., Jimenez, C., Veselovskii, I., Engelmann, R., and Althausen, D.: Depolarization and lidar ratios at 355, 532, and 1064 nm and microphysical properties of aged tropospheric and stratospheric Canadian wildfire smoke, Atmos. Chem. Phys., 18, 11847–11861, https://doi.org/10.5194/acp-18-11847-2018, 2018.
Höpfner, M., Ungermann, J., Borrmann, S., Wagner, R., Spang, R., Riese,
M., Stiller, G., Appel, O., Batenburg, A. M., Bucci, S., Cairo, F.,
Dragoneas, A., Friedl-Vallon, F., Hünig, A., Johansson, S., Krasauskas,
L., Legras, B., Leisner, T., Mahnke, C., Möhler, O., Molleker, S.,
Müller, R., Neubert, T., Orphal, J., Preusse, P., Rex, M., Saathoff, H.,
Stroh, F., Weigel, R., and Wohltmann, I.: Ammonium nitrate particles formed
in upper troposphere from ground ammonia sources during Asian monsoons, Nat.
Geosci., 12, 608–612, https://doi.org/10.1038/s41561-019-0385-8, 2019.
Hostetler, C. A., Liu, Z., Reagan, J., Vaughan, M., Winker, D., Osborn, M.,
Hunt, W. H., Powell, K. A., and Trepte, C.: CALIOP Algorithm Theoretical
Basis Document, Calibration and Level 1 Data Products, PC-SCI-201, NASA
Langley Research Center, Hampton, VA 23681, 66 pp.,
http://www-calipso.larc.nasa.gov/resources/project_documentation.php (last access: 3 September 2021), 2006.
Hu, Q., Goloub, P., Veselovskii, I., Bravo-Aranda, J.-A., Popovici, I. E., Podvin, T., Haeffelin, M., Lopatin, A., Dubovik, O., Pietras, C., Huang, X., Torres, B., and Chen, C.: Long-range-transported Canadian smoke plumes in the lower stratosphere over northern France, Atmos. Chem. Phys., 19, 1173–1193, https://doi.org/10.5194/acp-19-1173-2019, 2019.
Hunt, W., Winker, D., Vaughan, M., Powell, K., Lucker, P., and Weimer, C.:
CALIPSO lidar description and performance assessment, J. Atmos. Ocean.
Tech., 26, 1214–1228, https://doi.org/10.1175/2009JTECHA1223.1, 2009.
Kablick, G. P., Fromm, M. D., Miller, S. D., Partain, P., Peterson, D., Lee,
S., Zhang, Y., Lambert, A., and Li, Z.: The Great Slave Lake pyroCb of 5 August
2014: Observations, simulations, comparisons with regular convection, and
impact on UTLS water vapor, J. Geophys. Res.-Atmos., 123, 12332–12352,
https://doi.org/10.1029/2018JD028965, 2018.
Kablick, G. P., Allen, D. R., Fromm, M. D., and Nedoluha, G. E.: Australian
pyroCb smoke generates synoptic-scale stratospheric anticyclones, Geophys.
Res. Lett., 47, e2020GL088101, https://doi.org/10.1029/2020GL088101, 2020.
Kar, J., Vaughan, M. A., Lee, K.-P., Tackett, J. L., Avery, M. A., Garnier, A., Getzewich, B. J., Hunt, W. H., Josset, D., Liu, Z., Lucker, P. L., Magill, B., Omar, A. H., Pelon, J., Rogers, R. R., Toth, T. D., Trepte, C. R., Vernier, J.-P., Winker, D. M., and Young, S. A.: CALIPSO lidar calibration at 532 nm: version 4 nighttime algorithm, Atmos. Meas. Tech., 11, 1459–1479, https://doi.org/10.5194/amt-11-1459-2018, 2018.
Khaykin, S. M., Godin-Beekmann, S., Hauchecorne, A., Pelon, J., Ravetta, F.,
and Keckut, P.: Stratospheric smoke with unprecedentedly high backscatter
observed by lidars above southern France, Geophys. Res. Lett., 45,
1639–1646, https://doi.org/10.1002/2017GL076763, 2018.
Khaykin, S., Legras, B., Bucci, S., Sellitto, P., Isaksen, L., Tence, F.,
Bekki, S., Bourassa, A. E., Rieger, L. A., Zawada, D., Jumelet, J., and
Godin-Beekmann, S.: The 2019/20 Australian wildfires generated a persistent
smoke-charged vortex rising up to 35 km altitude, Commun. Earth Environ., 1,
22, https://doi.org/10.1038/s43247-020-00022-5, 2020.
Kim, M.-H., Omar, A. H., Tackett, J. L., Vaughan, M. A., Winker, D. M., Trepte, C. R., Hu, Y., Liu, Z., Poole, L. R., Pitts, M. C., Kar, J., and Magill, B. E.: The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm, Atmos. Meas. Tech., 11, 6107–6135, https://doi.org/10.5194/amt-11-6107-2018, 2018.
Klekociuk, A. R., Ottaway, D. J., MacKinnon, A. D., Reid, I. M., Twigger, L.
V., and Alexander, S. P.: Australian Lidar Measurements of Aerosol Layers
Associated with the 2015 Calbuco Eruption, Atmosphere, 11, 124,
https://doi.org/10.3390/atmos11020124, 2020.
Klüser, L., Erbertseder, T., and Meyer-Arnek, J.: Observation of volcanic ash from Puyehue–Cordón Caulle with IASI, Atmos. Meas. Tech., 6, 35–46, https://doi.org/10.5194/amt-6-35-2013, 2013.
Kokkalis, P., Papayannis, A., Amiridis, V., Mamouri, R. E., Veselovskii, I., Kolgotin, A., Tsaknakis, G., Kristiansen, N. I., Stohl, A., and Mona, L.: Optical, microphysical, mass and geometrical properties of aged volcanic particles observed over Athens, Greece, during the Eyjafjallajökull eruption in April 2010 through synergy of Raman lidar and sunphotometer measurements, Atmos. Chem. Phys., 13, 9303–9320, https://doi.org/10.5194/acp-13-9303-2013, 2013.
Kremser, S., Thomason, L. W., Hobe, M., Hermann, M., Deshler, T., Timmreck,
C., Toohey, M., Stenke, A., Schwarz, J. P., Weigel, R., Fueglistaler, S.,
Prata, F. J., Vernier, J.-P., Schlager, H., Barnes, E. J., Antuna-Marrero,
J.-C., Fairlie, D., Palm, M., Mahieu, E., Notholt, J., Rex, M., Bingen, C.,
Vanhellemont, F., Bourassa, A., Plane, J. M. C., Klocke, D., Carn, S. A.,
Clarisse, L., Trickl, T., Neely, R. D., James, A., Rieger, L., Wilson, C.
J., and Meland, B.: Stratospheric aerosol – Observations, processes, and
impact on climate, Rev. Geophys., 54, 278–335,
https://doi.org/10.1002/2015RG000511, 2016.
Kristiansen, N. I., Stohl, A., Prata, A. J., Richter, A., Eckhardt, S.,
Seibert, P., Hoffmann, A., Ritter, C., Bitar, L., Duck, T. J., and Stebel,
K.: Remote sensing and inverse transport modelling of the Kasatochi eruption
sulphur dioxide cloud, J. Geophys. Res., 115, D00L16,
https://doi.org/10.1029/2009JD013286, 2010.
Krotkov, N. A., Schoeberl, M. R., Morris, G. A., Carn, S., and Yang, K.:
Dispersion and lifetime of the SO2 cloud from the August 2008 Kasatochi
eruption, J. Geophys. Res., 115, D00L20,
https://doi.org/10.1029/2010JD013984, 2010.
Langmann, B., Zaksek, K., and Hort, M.: Atmospheric distribution and removal
of volcanic ash after the eruption of Kasatochi volcano: A regional model
study, J. Geophys. Res., 115, D00L06, https://doi.org/10.1029/2009JD013298,
2010.
Liu, Z., Kar, J., Zeng, S., Tackett, J., Vaughan, M., Avery, M., Pelon, J., Getzewich, B., Lee, K.-P., Magill, B., Omar, A., Lucker, P., Trepte, C., and Winker, D.: Discriminating between clouds and aerosols in the CALIOP version 4.1 data products, Atmos. Meas. Tech., 12, 703–734, https://doi.org/10.5194/amt-12-703-2019, 2019.
Lopes, F. J. S., Silva, J. J., Antuña Marrero, J. C., Taha, G., and
Landulfo, E.: Synergetic Aerosol Layer Observation After the 2015 Calbuco
Volcanic Eruption Event, Remote Sens., 11, 195,
https://doi.org/10.3390/rs11020195, 2019.
Maes, K., Vandenbussche, S., Klüser, L., Kumps, N., and De Mazière,
M.: Vertical Profiling of Volcanic Ash from the 2011 Puyehue Cordón
Caulle Eruption Using IASI, Remote Sens., 8, 103,
https://doi.org/10.3390/rs8020103, 2016.
Martinsson, B. G., Brenninkmeijer, C. A. M., Carn, S. A., Hermann, M., Heue,
K.-P., Velthoven, P. F. J. V., and Zahn, A.: Influence of the 2008 Kasatochi
volcanic eruption on sulfurous and carbonaceous aerosol constituents in the
lower stratosphere, Geophys. Res. Lett., 36, L12813,
https://doi.org/10.1029/2009GL038735, 2009.
Marzano, F., Corradini, S., Mereu, L., Kylling, A., Montopoli, M., Cimini,
D., Merucci, L., and Stelitano, D.: Multisatellite Multisensor Observations
of a Sub-Plinian Volcanic Eruption: The 2015 Calbuco Explosive Event in
Chile, IEEE Trans. Geosci. Remote Sens., 56, 2597–2612,
https://doi.org/10.1109/TGRS.2017.2769003, 2018.
Mona, L., Amodeo, A., D'Amico, G., Giunta, A., Madonna, F., and Pappalardo, G.: Multi-wavelength Raman lidar observations of the Eyjafjallajökull volcanic cloud over Potenza, southern Italy, Atmos. Chem. Phys., 12, 2229–2244, https://doi.org/10.5194/acp-12-2229-2012, 2012.
NASA/LARC/SD/ASDC: CALIPSO Lidar Level 2 Polar Stratospheric Clouds (PSC)
Mask, Provisional V1-11. NASA Langley Atmospheric Science Data Center DAAC, http://10.5067/CALIOP/CALIPSO/CAL_LID_L2_PSCMask-Prov-V1-11, 2016a.
NASA/LARC/SD/ASDC: CALIPSO Lidar Level 1B profile data, V4-10, NASA Langley
Atmospheric Science Data Center DAAC [data set],
https://doi.org/10.5067/CALIOP/CALIPSO/LID_L1-STANDARD-V4-10,
2016b.
NASA/LARC/SD/ASDC: CALIPSO Lidar Level 2 5 km Aerosol Layer Data, V4-20,
NASA Langley Atmospheric Science Data Center DAAC [data set],
http://10.5067/CALIOP/CALIPSO/LID_L2_05KMALAY-STANDARD-V4-20, 2018a.
NASA/LARC/SD/ASDC: CALIPSO Lidar Level 2 Aerosol Profile, V4-20, NASA
Langley Atmospheric Science Data Center DAAC [data set],
http://10.5067/CALIOP/CALIPSO/LID_L2_05KMAPRO-STANDARD-V4-20, 2018b.
NASA/LARC/SD/ASDC: CALIPSO Lidar Level 2 Vertical Feature Mask (VFM), V4-20,
NASA Langley Atmospheric Science Data Center DAAC [data set],
https://doi.org/10.5067/CALIOP/CALIPSO/LID_L2_VFM-STANDARD-V4-20, 2018c.
NASA/LARC/SD/ASDC: CALIPSO Lidar Level 1B profile data, V4-51, NASA Langley
Atmospheric Science Data Center DAAC [data set],
https://doi.org/10.5067/CALIOP/CALIPSO/CAL_LID_L1-Standard-V4-51, 2022.
Noh, Y. M., Dong, H. S., and Müller, D.: Variation of the vertical
distribution of Nabro volcano aerosol layers in the stratosphere observed by
LIDAR, Atmos. Environ., 154, 1–8,
https://doi.org/10.1016/j.atmosenv.2017.01.033, 2017.
Ohneiser, K., Ansmann, A., Baars, H., Seifert, P., Barja, B., Jimenez, C., Radenz, M., Teisseire, A., Floutsi, A., Haarig, M., Foth, A., Chudnovsky, A., Engelmann, R., Zamorano, F., Bühl, J., and Wandinger, U.: Smoke of extreme Australian bushfires observed in the stratosphere over Punta Arenas, Chile, in January 2020: optical thickness, lidar ratios, and depolarization ratios at 355 and 532 nm, Atmos. Chem. Phys., 20, 8003–8015, https://doi.org/10.5194/acp-20-8003-2020, 2020.
Ohneiser, K., Ansmann, A., Chudnovsky, A., Engelmann, R., Ritter, C., Veselovskii, I., Baars, H., Gebauer, H., Griesche, H., Radenz, M., Hofer, J., Althausen, D., Dahlke, S., and Maturilli, M.: The unexpected smoke layer in the High Arctic winter stratosphere during MOSAiC 2019–2020 , Atmos. Chem. Phys., 21, 15783–15808, https://doi.org/10.5194/acp-21-15783-2021, 2021.
Ohneiser, K., Ansmann, A., Kaifler, B., Chudnovsky, A., Barja, B., Knopf, D. A., Kaifler, N., Baars, H., Seifert, P., Villanueva, D., Jimenez, C., Radenz, M., Engelmann, R., Veselovskii, I., and Zamorano, F.: Australian wildfire smoke in the stratosphere: the decay phase in 2020/2021 and impact on ozone depletion, Atmos. Chem. Phys., 22, 7417–7442, https://doi.org/10.5194/acp-22-7417-2022, 2022.
Omar, A. H., Winker, D. M., Vaughan, M. A., Hu, Y., Trepte, C. R., Ferrare, R. A., Lee, K. P., Hostetler, C. A., Kittaka, C., Rogers, R. R., and Kuehn, R. E.: The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm, J. Atmos. Ocean. Technol., 26, 1994–2014, https://doi.org/10.1175/2009JTECHA1231.1, 2009.
Pardini, F., Burton, M., Arzilli, F., La Spina, G., and Polacci, M.: SO2
emissions, plume heights and magmatic processes inferred from satellite
data: The 2015 Calbuco eruptions, J. Volcanol. Geoth. Res., 361, 12–24,
https://doi.org/10.1016/j.jvolgeores.2018.08.001, 2018.
Peterson, D. A., Campbell, J. R., Hyer, E. J., Fromm, M. D., Kablick, G. P.,
Cossuth, J. H., and DeLand, M. T.: Wildfire-driven thunderstorms cause a
volcano-like stratospheric injection of smoke, Clim. Atmos.
Sci., 1, 30, https://doi.org/10.1038/s41612-018-0039-3, 2018.
Peterson, D. A., Hyer, E., Campbell, J., Fromm, M., Bennese, C., Berman, M.,
and Van, T.: Quantifying the impact of intense pyroconvection on
stratospheric aerosol loading. American Geophysical Union 2019 Fall Meeting,
San Francisco, CA, 9–13 December 2019, Abstract GC11F-1150,
https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/510480 (last access: 2 February 2023), 2019.
Peterson, D. A., Hyer, E. J., Campbell, J. R., Solbrig, J. E., and Fromm, M.
D.: A conceptual model for development of intense pyrocumulonimbus in
western North America, Mon. Weather Rev., 145, 2235–2255,
https://doi.org/10.1175/MWR-D-16-0232.1, 2017.
Pitts, M. C., Poole, L. R., Dörnbrack, A., and Thomason, L. W.: The 2009–2010 Arctic polar stratospheric cloud season: a CALIPSO perspective, Atmos. Chem. Phys., 11, 2161–2177, https://doi.org/10.5194/acp-11-2161-2011, 2011.
Pitts, M. C., Poole, L. R., and Gonzalez, R.: Polar stratospheric cloud climatology based on CALIPSO spaceborne lidar measurements from 2006 to 2017, Atmos. Chem. Phys., 18, 10881–10913, https://doi.org/10.5194/acp-18-10881-2018, 2018.
Poole, L. R. and Pitts, M. C.: Polar stratospheric cloud climatology based
on Stratospheric Aerosol Measurement II observations from 1978 to 1989, J.
Geophys. Res., 99, 13083–13089, https://doi.org/10.1029/94JD00411, 1994.
Prata, A. J.: Infrared radiative transfer calculations for volcanic ash
clouds, Geophys. Res. Lett., 16, 1293–1296, 1989
Prata, A. J., Gangale, G., Clarisse, L., and Karagulian, F.: Ash and sulfur
dioxide in the 2008 eruptions of Okmok and Kasatochi: Insights from high
spectral resolution satellite measurements, J. Geophys. Res., 115, D00L18,
https://doi.org/10.1029/2009JD013556, 2010.
Prata, A. T., Young, S. A., Siems, S. T., and Manton, M. J.: Lidar ratios of stratospheric volcanic ash and sulfate aerosols retrieved from CALIOP measurements, Atmos. Chem. Phys., 17, 8599–8618, https://doi.org/10.5194/acp-17-8599-2017, 2017.
Prata, A. T., Mingari, L., Folch, A., Macedonio, G., and Costa, A.: FALL3D-8.0: a computational model for atmospheric transport and deposition of particles, aerosols and radionuclides – Part 2: Model validation, Geosci. Model Dev., 14, 409–436, https://doi.org/10.5194/gmd-14-409-2021, 2021.
Pueschel, R. F.: Stratospheric aerosols: Formation, properties, effects,
J. Aerosol Sci., 27, 383–402,
https://doi.org/10.1016/0021-8502(95)00557-9, 1996.
Rosen, J. M., Kjome, N. T., Larsen, N., Knudsen, B. M., Kyrö, E., Kivi,
R., Karhu, J., Neuber, R., and Beninga, I.: Polar stratospheric cloud
threshold temperatures in the 1995–1996 arctic vortex, J. Geophys. Res.,
102, 28195–28202, https://doi.org/10.1029/97JD02701, 1997.
Ryan, R., Vaughan, M., Rodier, S. D., Getzewich, B. J., and Winker, D. M.:
Column Optical Depths (COD) Derived from CALIOP Ocean Surface Returns, 30th
International Laser Radar Conference, Virtual, 26 June–1 July 2022, Paper
S01_P09_Ryan,
https://meeting-info.org/wp-content/uploads/elementor/forms/6299271aeacb2.pptx?6bfec1&6bfec1,
last access: 4 October 2022.
Sayer, A. M., Hsu, N. C., Eck, T. F., Smirnov, A., and Holben, B. N.: AERONET-based models of smoke-dominated aerosol near source regions and transported over oceans, and implications for satellite retrievals of aerosol optical depth, Atmos. Chem. Phys., 14, 11493–11523, https://doi.org/10.5194/acp-14-11493-2014, 2014.
Sicard, M., Granados-Muñoz, M. J., Alados-Arboledas, L., Barragán,
R., Bedoya-Velásquez, A. E., Benavent-Oltra, J. A., Bortoli, D.,
Comerón, A., Córdoba-Jabonero, C., Costa, M. J., del Águila, A.,
Fernández, A. J., Guerrero-Rascado, J. L., Jorba, O., Molero, F.,
Muñoz-Porcar, C., Ortiz-Amezcua, P., Papagiannopoulos, N., Potes, M.,
Pujadas, M., Rocadenbosch, F., Rodríguez-Gomez, A., Román, R.,
Salgado, R., Salgueiro, V., Sola, Y., and Yela, M.: Ground/space,
passive/active remote sensing observations coupled with particle dispersion
modelling to understand the inter-continental transport of wildfire smoke
plumes, Remote Sens. Environ., 232, 111294,
https://doi.org/10.1016/j.rse.2019.111294, 2019.
Siddaway, J. M. and Petelina, S. V.: Transport and evolution of the 2009
Australian Black Saturday bushfire smoke in the lower stratosphere observed
by OSIRIS on Odin, J. Geophys. Res., 116, D06203,
https://doi.org/10.1029/2010JD015162, 2011.
Stone, K. A., Solomon, S., Kinnison, D. E., Pitts, M. C., Poole, L. R.,
Mills, M. J., Schmidt, A., Neely III, R. R., Ivy, D., Schwartz, M. J.,
Vernier, J. P., Johnson, B. J., Tully, M. B., Klekocius, A. R.,
König-Langlo, G., and Hagiya, S.: Observing the impact of Calbuco
volcanic aerosols on south polar ozone depletion in 2015, J. Geophys.
Res.-Atmos., 122, 11862–11879, https://doi.org/10.1002/2017JD026987, 2017.
Tackett, J. L., Vaughan, M. A., Lee, K.-P. A., Kar, J., and Trepte, C. R.:
Improvements in CALIOP Smoke Optical Depth over Clouds, American
Meteorological Society 101st Annual Meeting, Virtual, 10–15 January 2021,
Paper 381852,
https://ams.confex.com/ams/101ANNUAL/meetingapp.cgi/Paper/381852 (last
access: 4 October 2022), 2021.
Tackett, J., Vaughan, M., Lambeth, J., and Garnier, A.: Critical Improvements to
CALIOP Boundary Layer Cloud-Clearing in Version 4.5, CloudSat/CALIPSO Annual
Science Program Review, Fort Collins, CO, 12–14 September 2022, Paper 10 Day
1, https://sites.google.com/view/ccstm-2022/home, last access 4 October
2022.
Theys, N., Campion, R., Clarisse, L., Brenot, H., van Gent, J., Dils, B., Corradini, S., Merucci, L., Coheur, P.-F., Van Roozendael, M., Hurtmans, D., Clerbaux, C., Tait, S., and Ferrucci, F.: Volcanic SO2 fluxes derived from satellite data: a survey using OMI, GOME-2, IASI and MODIS, Atmos. Chem. Phys., 13, 5945–5968, https://doi.org/10.5194/acp-13-5945-2013, 2013.
Torres, O., Bhartia, P. K., Taha, G., Jethva, H., Das, S., Colarco, P.,
Krotkov, N., Omar, A., and Ahn, C.: Stratospheric Injection of Massive Smoke
Plume from Canadian Boreal Fires in 2017 as seen by DSCOVR-EPIC, CALIOP and
OMPS-LP Observations, J. Geophys. Res.-Atmos., 125, e2020JD032579,
https://doi.org/10.1029/2020JD032579, 2020.
Ulke, A. G., Torres Brizuela, M. M., Raga, G. B., and Baumgardner, D.: Aerosol properties and meteorological conditions in the city of Buenos Aires, Argentina, during the resuspension of volcanic ash from the Puyehue-Cordón Caulle eruption, Nat. Hazards Earth Syst. Sci., 16, 2159–2175, https://doi.org/10.5194/nhess-16-2159-2016, 2016.
Vaughan, M. A., Winker, D. M., and Powell, K. A.: CALIOP Algorithm
Theoretical Basis Document Part 2: Feature Detection and Layer Properties
Algorithms, available at:
https://www-calipso.larc.nasa.gov/resources/pdfs/PC-SCI-202_Part2_rev1x01.pdf (last access: 2 February 2023), 2005.
Vaughan, M. A., Powell, K. A., Winker, D. M., Hostetler, C. A., Kuehn, R.
E., Hunt, W. H., Getzewich, B. J., Young, S. A., Liu, Z., and McGill, M. J.:
Fully automated detection of cloud and aerosol layers in the CALIPSO lidar
measurements, J. Atmos. Ocean. Technol., 26, 2034–2050,
https://doi.org/10.1175/2009JTECHA1228.1, 2009.
Vernier, J. P., Pommereau, J. P., Garnier, A., Pelon, J., Larsen, N.,
Nielsen, J., Christensen, T., Cairo, F., Thomason, L. W., Leblanc, T., and
McDermid, I. S.: Tropical stratospheric aerosol layer from CALIPSO lidar
observations, J. Geophys. Res.-Atmos., 114, D00H10,
https://doi.org/10.1029/2009jd011946, 2009.
Vernier, J.-P., Fairlie, T. D., Murray, J. J., Tupper, A., Trepte, C.,
Winker, D., Pelon, J., Garnier, A., Jumelet, J., Pavolonis, M., Omar, A. H.,
and Powell, K. A.: An advanced system to monitor the 3D structure of diffuse
volcanic ash clouds, J. Appl. Meteorol. Clim., 52, 2125–2138,
https://doi.org/10.1175/JAMC-D-12-0279.1, 2013.
Vernier, J.-P., Fairlie, T. D., Deshler, T., Natarajan, M., Knepp, T.,
Foster, K., Wienhold, F. G., Bedka, K. M., Thomason, L., and Trepte, C.: In
situ and space-based observations of the Kelud volcanic plume: The
persistence of ash in the lower stratosphere, J. Geophys. Res.-Atmos., 121,
11104–11118, https://doi.org/10.1002/2016JD025344, 2016.
Vernier, J., Fairlie, T.D., Deshler, T., Venkat Ratnam, M., Gadhavi, H.,
Kumar, B. S., Natarajan, M., Pandit, A. K., Akhil Raj, S. T., Hemanth Kumar,
A., Jayaraman, A., Singh, A. K., Rastogi, N., Sinha, P. R., Kumar, S.,
Tiwari, S., Wegner, T., Baker, N., Vignelles, D., Stenchikov, G.,
Shevchenko, I., Smith, J., Bedka, K., Kesarkar, A., Singh, V., Bhate, J.,
Ravikiran, V., Durga Rao, M., Ravindrababu, S., Patel, A., Vernier, H.,
Wienhold, F. G., Liu, H., Knepp, T. N., Thomason, L., Crawford, J., Ziemba,
L., Moore, J., Crumeyrolle, S., Williamson, M., Berthet, G., Jegou, F., and
Renard, J.: BATAL: The Balloon Measurement Campaigns of the Asian Tropopause
Aerosol Layer, B. Am. Meteorol. Soc., 99, 955–973,
https://doi.org/10.1175/BAMS-D-17-0014.1, 2018.
Waythomas, C. F., Scott, W. E., Prejean, S. G., Schneider, D. J., Izbekov,
P., and Nye, C. J.: The 7–8 August 2008 eruption of Kasatochi Volcano,
central Aleutian Islands, Alaska, J. Geophys. Res., 115, B00B06,
https://doi.org/10.1029/2010JB007437, 2010.
Wunderman, R. (Ed.): Report on Puyehue-Cordon Caulle (Chile), Global
Volcanism Program, Bulletin of the Global Volcanism Network, 37:3,
Smithsonian Institution, https://doi.org/10.5479/si.GVP.BGVN201203-357150,
2012.
Winker, D. M., Vaughan, M. A., Omar, A., Hu, Y., Powell, K. A., Liu, Z.,
Hunt, W. H., and Young, S. A.: Overview of the CALIPSO mission and CALIOP
data processing algorithms, J. Atmos. Ocean. Technol., 26, 2310–2323,
https://doi.org/10.1175/2009JTECHA1281.1, 2009.
Winker, D. M., Liu, Z., Omar, A., Tackett, J., and Fairlie, D.: CALIOP
observations of the transport of ash from the Eyjafjallajökull volcano
in April 2010, J. Geophys. Res., 117, D00U15,
https://doi.org/10.1029/2011JD016499, 2012.
Young, S. A., Vaughan, M. A., Kuehn, R. E., and Winker, D. M.: The retrieval
of profiles of particulate extinction from Cloud–Aerosol Lidar and Infrared
Pathfinder Satellite Observations (CALIPSO) data: Uncertainty and error
sensitivity analyses, J. Atmos. Ocean. Technol., 30, 395–428,
https://doi.org/10.1175/JTECH-D-12-00046.1, 2013.
Yu, P., Toon, O. B., Bardeen, C. G., Zhu, Y., Rosenlof, K. H., Portmann, R.
W., Thornberry, T. D., Gao, R. S., Davis, S. M., Wolf, E. T., de Gouw, J.,
Peterson, D. A., Fromm, M. D., and Robock, A.: Black carbon lofts wildfire
smoke high into the stratosphere to form a persistent plume, Science, 365,
587–590, https://doi.org/10.1126/science.aax1748, 2019.
Zhu, Y., Toon, O. B., Kinnison, D., Harvey, V. L., Mills, M. J., Bardeen, C.
G., Pitts, M., Begue, N., Renard, J.-B., Berthet, G., and Jegou, F.:
Stratospheric Aerosols, Polar Stratospheric Clouds, and Polar Ozone
Depletion After the Mount Calbuco Eruption in 2015, J. Geophys. Res.-Atmos.,
123, 12308–12331, https://doi.org/10.1029/2018JD028974, 2018.
Zhuang, J. and Yi, F.: Nabro aerosol evolution observed jointly by lidars at
a mid-latitude site and CALIPSO, Atmos. Environ., 140, 106–116,
https://doi.org/10.1016/j.atmosenv.2016.05.048, 2016.
Short summary
The accurate identification of aerosol types in the stratosphere is important to characterize their impacts on the Earth climate system. The space-borne lidar on board CALIPSO is well-posed to identify aerosols in the stratosphere from volcanic eruptions and major wildfire events. This paper describes improvements implemented in the version 4.5 CALIPSO data release to more accurately discriminate between volcanic ash, sulfate, and smoke within the stratosphere.
The accurate identification of aerosol types in the stratosphere is important to characterize...