Articles | Volume 17, issue 19
https://doi.org/10.5194/amt-17-5861-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-17-5861-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Local and regional enhancements of CH4, CO, and CO2 inferred from TCCON column measurements
Kavitha Mottungan
Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ 85721, USA
now at: National Physical Laboratory (NPL), Teddington, UK
Chayan Roychoudhury
Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ 85721, USA
Vanessa Brocchi
Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ 85721, USA
now at: Atmo Auvergne-Rhône-Alpes, association agréé de surveillance de la qualité de l'air, 69500 Bron, France
Benjamin Gaubert
NSF National Center for Atmospheric Research, Boulder, CO 80307, USA
Wenfu Tang
NSF National Center for Atmospheric Research, Boulder, CO 80307, USA
Mohammad Amin Mirrezaei
Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ 85721, USA
John McKinnon
Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ 85721, USA
Yafang Guo
Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ 85721, USA
David W. T. Griffith
Centre for Atmospheric Chemistry, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Australia
Dietrich G. Feist
Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany
Physik der Atmosphäre, Ludwig-Maximilians-Universität München, Munich, Germany
Max Planck Institute for Biogeochemistry, Jena, Germany
Isamu Morino
National Institute for Environmental Studies (NIES), Onogawa 16-2, Tsukuba, Ibaraki 305-8506, Japan
Mahesh K. Sha
Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
Manvendra K. Dubey
Los Alamos National Laboratory, Earth Systems Observations (EES-14), Los Alamos, NM 87545, USA
Martine De Mazière
Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
Nicholas M. Deutscher
Centre for Atmospheric Chemistry, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Australia
Paul O. Wennberg
Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
Ralf Sussmann
Institute of Meteorology and Climate Research Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology, Karlsruhe, Germany
Rigel Kivi
Space and Earth Observation Centre, Finnish Meteorological Institute, Sodankylä, Finland
Tae-Young Goo
Convergence Meteorological Research Department, National Institute of Meteorological Sciences (NIMS), Seogwipo city 63568, Korea
Voltaire A. Velazco
Deutscher Wetterdienst (DWD), Meteorological Observatory Hohenpeissenberg, 82383 Hohenpeissenberg, Germany
Wei Wang
Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei, China
Avelino F. Arellano Jr.
CORRESPONDING AUTHOR
Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ 85721, USA
Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ 85721, USA
Data sets
MOPITT CO gridded monthly means (Near and Thermal Infrared Radiances) V008 NASA/LARC/SD/ASDC https://doi.org/10.5067/TERRA/MOPITT/MOP03JM_L3.008
2014 TCCON Data Release Total Carbon Column Observing Network (TCCON) Team https://doi.org/10.14291/TCCON.GGG2014
Short summary
A combination of data analysis techniques is introduced to separate local and regional influences on observed levels of carbon dioxide, carbon monoxide, and methane from an established ground-based remote sensing network. We take advantage of the covariations in these trace gases to identify the dominant type of sources driving these levels. Applying these methods in conjunction with existing approaches to other datasets can better address uncertainties in identifying sources and sinks.
A combination of data analysis techniques is introduced to separate local and regional...