Articles | Volume 17, issue 22
https://doi.org/10.5194/amt-17-6579-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-17-6579-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Testing ion exchange resin for quantifying bulk and throughfall deposition of macro- and micro-elements in forests
Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen 6700 AA, the Netherlands
Wim de Vries
Earth Systems and Global Change Group, Wageningen University and Research, Wageningen 6700 AA, the Netherlands
G. F. (Ciska) Veen
Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen 6708 PB, the Netherlands
Marcel R. Hoosbeek
Soil Chemistry Group, Wageningen University and Research, Wageningen 6700 AA, the Netherlands
Frank J. Sterck
Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen 6700 AA, the Netherlands
Cited articles
Balestrini, R., Arisci, S., Brizzio, M. C., Mosello, R., Rogora, M., and Tagliaferri, A.: Dry deposition of particles and canopy exchange: Comparison of wet, bulk and throughfall deposition at five forest sites in Italy, Atmos. Environ., 41, 745–756, 2007.
Bates, D., Mächler, M., Bolker, B., and Walker, S.: Fitting linear mixed-effects models using lme4, arXiv preprint arXiv:1406.5823, https://doi.org/10.18637/jss.v067.i01, 2014.
Bayar, S., Fïl, B. A., Boncukcuoglu, R., and Yilmaz, A. E.: Adsorption kinetics and isotherms for the removal of zinc ions from aqueous solutions by an ion-exchange resin, J. Chem. Soc. Pak., 34, 841–848, 2012.
Bleeker, A., Draaijers, G., van der Veen, D., Erisman, J. W., Mols, H., Fonteijn, P., and Geusebroek, M.: Field intercomparison of throughfall measurements performed within the framework of the Pan European intensive monitoring program of EU/ICP Forest, Environ. Pollut., 125, 123–138, https://doi.org/10.1016/S0269-7491(03)00142-8, 2003.
Boutin, M., Lamaze, T., Couvidat, F., and Pornon, A.: Subalpine Pyrenees received higher nitrogen deposition than predicted by EMEP and CHIMERE chemistry-transport models, Sci. Rep., 5, 1–9, 2015.
Bowman, W. D., Cleveland, C. C., Halada, Ĺ., Hreško, J., and Baron, J. S.: Negative impact of nitrogen deposition on soil buffering capacity, Nat. Geosci., 1, 767–770, 2008.
Brumbaugh, W. G., Arms, J. W., Linder, G. L., and Melton, V. D.: Development of ion-exchange collectors for monitoring atmospheric deposition of inorganic pollutants in Alaska parklands, US Geological Survey 2328-0328, 43 pp., https://doi.org/10.3133/sir20165096, 2016.
Cerón, R. M., Cerón, J. G., Muriel, M., Rangel, M., Lara, R. d. C., Tejero, B., Uc, M. P., and Rodríguez, A.: Assessing the Impact of Sulfur Atmospheric Deposition on Terrestrial Ecosystems Close to an Industrial Corridor in the Southeast of Mexico, J. Environ. Protect., 8, 1158–1177, https://doi.org/10.4236/jep.2017.810073, 2017.
Clarke, N., Žlindra, D., Ulrich, E., Mosello, R., Derome, J., Derome, K., König, N., Geppert, F., Lövblad, G., Draaijers, G. P. J., Hansen, K., Thimonier, A., Waldner, P., and Verstraeten, A.: Part XIV: Sampling and Analysis of Deposition, Version 2022-1, in: Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests, edited by: UNECE ICP Forests Programme Co-ordinating Centre, Thünen Institute of Forest Ecosystems, Eberswalde, Germany, 34 p. + Annex, https://www.icp-forests.org/pdf/manual/2020/ICP_Manual_part14_2022_Deposition_version_2022-1.pdf (last access: 5 November 2024), 2022.
Clow, D. W., Roop, H. A., Nanus, L., Fenn, M. E., and Sexstone, G. A.: Spatial patterns of atmospheric deposition of nitrogen and sulfur using ion-exchange resin collectors in Rocky Mountain National Park, USA, Atmos. Environ., 101, 149–157, 2015.
de Vries, W., Reinds, G. J., and Vel, E.: Intensive monitoring of forest ecosystems in Europe 2: Atmospheric deposition and its impacts on soil solution chemistry, Forest Ecol. Manage., 174, 97–115, https://doi.org/10.1016/S0378-1127(02)00030-0, 2003.
De Vries, W., Van der Salm, C., Reinds, G., and Erisman, J.: Element fluxes through European forest ecosystems and their relationships with stand and site characteristics, Environ. Pollut., 148, 501–513, 2007.
de Vries, W., Erisman, J. W., Spranger, T., Stevens, C. J., and van den Berg, L.: Nitrogen as a threat to European terrestrial biodiversity, The European nitrogen assessment: sources, effects and policy perspectives, Cambridge University Press, 436–494, https://doi.org/10.1017/CBO9780511976988.023, 2011.
de Vries, W., Posch, M., Reinds, G. J., and Hettelingh, J.-P.: Quantification of impacts of nitrogen deposition on forest ecosystem services in Europe, Nitrogen deposition, critical Loads and biodiversity, 411–424, 2014.
Decina, S. M., Templer, P. H., and Hutyra, L. R.: Atmospheric inputs of nitrogen, carbon, and phosphorus across an urban area: Unaccounted fluxes and canopy influences, Earth's Future, 6, 134–148, 2018.
Dobermann, A., Pampolino, M., and Adviento, M.: Resin capsules for on-site assessment of soil nutrient supply in lowland rice fields, Soil Sci. Soc. Am. J., 61, 1202–1213, 1997.
Draaijers, G., Erisman, J., Spranger, T., and Wyers, G.: The application of throughfall measurements for atmospheric deposition monitoring, Atmos. Environ., 30, 3349–3361, 1996.
Fang, Y. T., Yoh, M., Koba, K., Zhu, W. X., Takebayashi, Y., Xiao, Y. H., Lei, C. Y., Mo, J. M., Zhang, W., and Lu, X. K.: Nitrogen deposition and forest nitrogen cycling along an urban-rural transect in southern China, Global Change Biol., 17, 872–885, https://doi.org/10.1111/j.1365-2486.2010.02283.x, 2011.
Fenn, M., Bytnerowicz, A., Schilling, S., and Ross, C.: Atmospheric deposition of nitrogen, sulfur and base cations in jack pine stands in the Athabasca Oil Sands Region, Alberta, Canada, Environ. Pollut., 196, 497–510, 2015.
Fenn, M. E. and Poth, M. A.: Monitoring nitrogen deposition in throughfall using ion exchange resin columns: A field test in the San Bernardino Mountains, J. Environ. Qual., 33, 2007–2014, https://doi.org/10.2134/jeq2004.2007, 2004.
Fenn, M. E., Poth, M. A., and Arbaugh, M. J.: A throughfall collection method using mixed bed ion exchange resin columns, TheScientificWorldJOURNAL, 2, 122–130, https://doi.org/10.1100/tsw.2002.84, 2002.
Fenn, M. E., Bytnerowicz, A., and Schilling, S. L.: Passive monitoring techniques for evaluating atmospheric ozone and nitrogen exposure and deposition to California ecosystems, Gen. Tech. Rep. PSW-GTR-257. Albany, CA: US Department of Agriculture, Forest Service, Pacific Southwest Research Station, 257, https://pubmed.ncbi.nlm.nih.gov/12806045 (last access: 5 November 2024), 2018.
Garcia-Gomez, H., Izquieta-Rojano, S., Aguillaume, L., Gonzalez-Fernandez, I., Valino, F., Elustondo, D., Santamaria, J. M., Avila, A., Fenn, M. E., and Alonso, R.: Atmospheric deposition of inorganic nitrogen in Spanish forests of Quercus ilex measured with ion-exchange resins and conventional collectors, Environ. Pollut., 216, 653–661, https://doi.org/10.1016/j.envpol.2016.06.027, 2016.
Hart, S. and Binkley, D.: Colorimetric interference and recovery of adsorbed ions from ion exchange resins, Commun. Soil Sci. Plant Anal., 15, 893–902, 1984.
Hislop, J. E. and Hornbeck, J. W.: Coping with effects of high dissolved salt samples on the inductively coupled plasma spectrometer, Commun. Soil Sci. Plant Anal., 33, 3377–3388, 2002.
Hoffman, A. S., Albeke, S. E., McMurray, J. A., Evans, R. D., and Williams, D. G.: Nitrogen deposition sources and patterns in the Greater Yellowstone Ecosystem determined from ion exchange resin collectors, lichens, and isotopes, Sci. Total Environ., 683, 709–718, https://doi.org/10.1016/j.scitotenv.2019.05.323, 2019.
Horswill, P., O'Sullivan, O., Phoenix, G. K., Lee, J. A., and Leake, J. R.: Base cation depletion, eutrophication and acidification of species-rich grasslands in response to long-term simulated nitrogen deposition, Environ. Pollut., 155, 336–349, 2008.
Houdijk, A., Verbeek, P., Van Dijk, H., and Roelofs, J.: Distribution and decline of endangered herbaceous heathland species in relation to the chemical composition of the soil, Plant Soil, 148, 137–143, 1993.
Ibrahim, M. H., Metali, F., U Tennakoon, K., and Sukri, R. S.: Impacts of invasive Acacias on ion deposition in a coastal Bornean tropical heath forest, J. Forest Res., 27, 20–27, 2022.
Johansson, K., Bergbäck, B., and Tyler, G.: Impact of atmospheric long range transport of lead, mercury and cadmium on the Swedish forest environment, Water, Air Soil Pollut. Focus, 1, 279–297, 2001.
Kjonaas, O. J.: Factors affecting stability and efficiency of ion exchange resins in studies of soil nitrogen transformation, Commun. Soil Sci. Plant Anal., 30, 2377–2397, 1999.
KNMI: LH15, langjarige gemiddelden, tijdvak 1991–2020, https://doi.org/10.2737/PSW-GTR-257, 2022.
Kohler, S., Jungkunst, H. F., Gutzler, C., Herrera, R., and Gerold, G.: Atmospheric Ionic Deposition in Tropical Sites of Central Sulawesi Determined by Ion Exchange Resin Collectors and Bulk Water Collector, Water Air Soil Poll., 223, 4485–4494, https://doi.org/10.1007/s11270-012-1211-8, 2012.
Krupa, S. and Legge, A.: Passive sampling of ambient, gaseous air pollutants: an assessment from an ecological perspective, Environ. Pollut., 107, 31–45, 2000.
Langlois, J. L., Johnson, D. W., and Mehuys, G. R.: Adsorption and recovery of dissolved organic phosphorus and nitrogen by mixed-bed ion-exchange resin, Soil Sci. Soc. Am. J., 67, 889–894, 2003.
Lenth, R. V., Singman, H., Love, J., Buerkner, P., and Herve, M.: R package emmeans: Estimated marginal means, Aka Least-Squares Means, 1-1, https://doi.org/10.32614/CRAN.package.emmeans, 2019.
Lovett, G. M. and Reiners, W. A.: Canopy structure and cloud water deposition in subalpine coniferous forests, Tellus B, 38, 319–327, 1986.
Lu, X., Mao, Q., Gilliam, F. S., Luo, Y., and Mo, J.: Nitrogen deposition contributes to soil acidification in tropical ecosystems, Global Change Biol., 20, 3790–3801, 2014.
Mamo, M., Ginting, D., Renken, R., and Eghball, B.: Stability of ion exchange resin under freeze–thaw or dry–wet environment, Soil Sci. Soc. Am. J., 68, 677–681, 2004.
Park, S.-C., Cho, H.-R., Lee, J.-H., Yang, H.-Y., and Yang, O.-B.: A study on adsorption and desorption behaviors of 14C from a mixed bed resin, Nuclear Eng. Technol., 46, 847–856, 2014.
Pey, J., Larrasoaña, J. C., Pérez, N., Cerro, J. C., Castillo, S., Tobar, M. L., de Vergara, A., Vázquez, I., Reyes, J., and Mata, M. P.: Phenomenology and geographical gradients of atmospheric deposition in southwestern Europe: Results from a multi-site monitoring network, Sci. Total Environ., 744, 140745, https://doi.org/10.1016/j.scitotenv.2020.140745, 2020.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., Heisterkamp, S., Van Willigen, B., and Maintainer, R.: Package “nlme”, Linear and nonlinear mixed effects models, version 3, 274, 2017.
Qian, P. and Schoenau, J.: Practical applications of ion exchange resins in agricultural and environmental soil research, Can. J. soil Sci., 82, 9–21, 2002.
Rabalais, N. N.: Nitrogen in aquatic ecosystems, AMBIO, 31, 102–112, 2002.
Risch, A. C., Zimmermann, S., Moser, B., Schütz, M., Hagedorn, F., Firn, J., Fay, P. A., Adler, P. B., Biederman, L. A., and Blair, J. M.: Global impacts of fertilization and herbivore removal on soil net nitrogen mineralization are modulated by local climate and soil properties, Global Change Biol., 26, 7173–7185, 2020.
RIVM: LMRe Regenwaterstamenstelling 2015, https://rivm.sitearchief.nl/#archive (last access: 5 November 2024), 2015.
Sheibley, R. W., Foreman, J. R., Moran, P. W., and Swarzenski, P. W.: Atmospheric deposition, water-quality, and sediment data for selected lakes in Mount Rainier, North Cascades, and Olympic National Parks, Washington, 2008–2010, US Geological Survey Data Series, 721, 34, https://pubs.usgs.gov/ds/721 (last access: 5 November 2024), 2012.
Sheng, W., Yu, G., Jiang, C., Yan, J., Liu, Y., Wang, S., Wang, B., Zhang, J., Wang, C., and Zhou, M.: Monitoring nitrogen deposition in typical forest ecosystems along a large transect in China, Environ. Monitor. Assessm., 185, 833–844, 2013.
Simkin, S. M., Lewis, D. N., Weathers, K. C., Lovett, G. M., and Schwarz, K.: Determination of sulfate, nitrate, and chloride in throughfall using ion-exchange resins, Water Air Soil Pollut., 153, 343–354, https://doi.org/10.1023/B:WATE.0000019958.59277.ed, 2004.
Skogley, E. O. and Dobermann, A.: Synthetic ion-exchange resins: Soil and environmental studies, J. Environ. Qual., 25, 13–24, 1996.
Solberg, S., Dobbertin, M., Reinds, G. J., Lange, H., Andreassen, K., Fernandez, P. G., Hildingsson, A., and de Vries, W.: Analyses of the impact of changes in atmospheric deposition and climate on forest growth in European monitoring plots: a stand growth approach, Forest Ecol. Manage., 258, 1735–1750, 2009.
Staelens, J., Houle, D., De Schrijver, A., Neirynck, J., and Verheyen, K.: Calculating dry deposition and canopy exchange with the canopy budget model: review of assumptions and application to two deciduous forests, Water Air Soil Pollut., 191, 149–169, 2008.
Stevens, C. J., Dise, N. B., Mountford, J. O., and Gowing, D. J.: Impact of nitrogen deposition on the species richness of grasslands, Science, 303, 1876–1879, 2004.
Szillery, J. E., Fernandez, I. J., Norton, S. A., Rustad, L. E., and White, A. S.: Using ion-exchange resins to study soil response to experimental watershed acidification, Environ. Monitor. Assess., 116, 383–398, 2006.
Tahovská, K., Čapek, P., Šantrůčková, H., Kaňa, J., and Kopáček, J.: Measurement of in situ phosphorus availability in acidified soils using iron-infused resin, Commun. Soil Sci. Plant Anal., 47, 487–494, 2016.
Thimonier, A.: Measurement of atmospheric deposition under forest canopies: some recommendations for equipment and sampling design, Environ. Monitor. Assess., 52, 353–387, 1998.
Tulloss, E. M. and Cadenasso, M. L.: Nitrogen deposition across scales: Hotspots and gradients in a California savanna landscape, Ecosphere, 6, 1–12, 2015.
Van Dam, D., Heil, G., and Heijne, B.: Throughfall chemistry of grassland vegetation: A new method with ion-exchange resins, Funct. Ecol., 1, 423–427, 1987.
Van Dam, D., Heil, G., Heijne, B., and Bobbink, R.: Throughfall below grassland canopies: a comparison of conventional and ion exchange methods, Environ. Pollut., 73, 85–99, 1991.
Van Langenhove, L., Verryckt, L. T., Bréchet, L., Courtois, E. A., Stahl, C., Hofhansl, F., Bauters, M., Sardans, J., Boeckx, P., and Fransen, E.: Atmospheric deposition of elements and its relevance for nutrient budgets of tropical forests, Biogeochemistry, 149, 175–193, 2020.
Vos, M. A., den Ouden, J., Hoosbeek, M., Valtera, M., de Vries, W., and Sterck, F.: The sustainability of timber and biomass harvest in perspective of forest nutrient uptake and nutrient stocks, Forest Ecol. Manage., 530, 120791, 2023a.
Vos, M. A. E., de Boer, D., de Vries, W., den Ouden, J., and Sterck, F. J.: Aboveground carbon and nutrient distributions are hardly associated with canopy position for trees in temperate forests on poor and acidified sandy soils, Forest Ecol. Manage., 529, 120731, https://doi.org/10.1016/j.foreco.2022.120731, 2023b.
Wieder, R. K., Vile, M. A., Albright, C. M., Scott, K. D., Vitt, D. H., Quinn, J. C., and Burke-Scoll, M.: Effects of altered atmospheric nutrient deposition from Alberta oil sands development on Sphagnum fuscum growth and C, N and S accumulation in peat, Biogeochemistry, 129, 1–19, 2016.
Xu, W., Zhang, L., and Liu, X.: A database of atmospheric nitrogen concentration and deposition from the nationwide monitoring network in China, Sci. Data, 6, 1–6, 2019.
Yamashita, N., Sase, H., Kobayashi, R., Leong, K.-P., Hanapi, J. M., Uchiyama, S., Urban, S., Toh, Y. Y., Muhamad, M., and Gidiman, J.: Atmospheric deposition versus rock weathering in the control of streamwater chemistry in a tropical rain-forest catchment in Malaysian Borneo, J. Tropical Ecol., 30, 481–492, 2014.
Zarrabi, M., Soori, M. M., Sepehr, M. N., Amrane, A., Borji, S., and Ghaffari, H. R.: Removal of phosphorus by ion-exchange resins: equilibrium, kinetic and thermodynamic studies, Environ. Eng. Manage. J. (EEMJ), 13, 891–903, https://doi.org/10.30638/eemj.2014.093, 2014.
Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A., and Smith, G. M.: Mixed effects models and extensions in ecology with R, Springer Science & Business Media, 574 pp., https://doi.org/10.1007/978-0-387-87458-6, 2009.
Short summary
Atmospheric deposition poses risks with high anthropogenic inputs. Current deposition measurement methods are labor-intensive. Ion exchange resin (IER) offers a promising, cost-effective alternative. We assessed IER for bulk deposition and throughfall, testing adsorption capacity, recovery efficiency and field performance. IER showed good adsorption and recovery and was unaffected by environmental conditions, showing potential for robust and efficient measurements of atmospheric deposition.
Atmospheric deposition poses risks with high anthropogenic inputs. Current deposition...