Articles | Volume 18, issue 11
https://doi.org/10.5194/amt-18-2481-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-18-2481-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The potential of observing atmospheric rivers with Global Navigation Satellite System (GNSS) radio occultation
Bahareh Rahimi
CORRESPONDING AUTHOR
Institute of Physics, Department of Astrophysics and Geophysics (AGP), University of Graz, Graz, Austria
Ulrich Foelsche
Institute of Physics, Department of Astrophysics and Geophysics (AGP), University of Graz, Graz, Austria
Wegener Center for Climate and Global Change (WEGC), University of Graz, Graz, Austria
Related authors
No articles found.
Thomas Pliemon, Ulrich Foelsche, Christian Rohr, and Christian Pfister
Clim. Past, 19, 2237–2256, https://doi.org/10.5194/cp-19-2237-2023, https://doi.org/10.5194/cp-19-2237-2023, 2023
Short summary
Short summary
Louis Morin consistently recorded precipitation intensity and duration between 1665 and 1713. We use these records to reconstruct precipitation totals. This reconstruction is validated by several methods and then presented using precipitation indexes. What is exceptional about this dataset is the availability of a sub-daily resolution and the low number of missing data points over the entire observation period.
Thomas Pliemon, Ulrich Foelsche, Christian Rohr, and Christian Pfister
Clim. Past, 18, 1685–1707, https://doi.org/10.5194/cp-18-1685-2022, https://doi.org/10.5194/cp-18-1685-2022, 2022
Short summary
Short summary
We have digitized and analyzed meteorological variables (temperature, direction of the movement of the clouds, and cloud cover), which were noted by Louis Morin in the period 1665–1713 in Paris. This time period is characterized by cold winters and autumns and moderate springs and summers. A low frequency of westerlies in the winter months leads to a cooling. Morin's measurements seem to be trustworthy. Only cloud cover in quantitative terms should be taken with caution.
Martin Stangl and Ulrich Foelsche
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-117, https://doi.org/10.5194/cp-2021-117, 2021
Manuscript not accepted for further review
Short summary
Short summary
We selected the Maunder Minimum (1645–1715), an astrophysically defined section of the Little Ice Age, and compared the historical data from the Grand Duchy of Transylvania with those from Germany, Austria and Switzerland. For a larger period (1500–1950), we examined on a decadal basis the extent to which an influence on the climate through long-term fluctuations in solar activity, as was inferred from isotope reconstructions from ice cores, can be seen.
Esmail Ghaemi, Ulrich Foelsche, Alexander Kann, and Jürgen Fuchsberger
Hydrol. Earth Syst. Sci., 25, 4335–4356, https://doi.org/10.5194/hess-25-4335-2021, https://doi.org/10.5194/hess-25-4335-2021, 2021
Short summary
Short summary
We assess an operational merged gauge–radar precipitation product over a period of 12 years, using gridded precipitation fields from a dense gauge network (WegenerNet) in southeastern Austria. We analyze annual data, seasonal data, and extremes using different metrics. We identify individual events using a simple threshold based on the interval between two consecutive events and evaluate the events' characteristics in both datasets.
Cited articles
Alley, R. B., Emanuel, K. A., and Zhang, F.: Advances in weather prediction, Science, 363, 342–344, https://doi.org/10.1126/science.aav7274, 2019
Angerer, B., Ladstädter, F., Scherllin-Pirscher, B., Schwärz, M., Steiner, A. K., Foelsche, U., and Kirchengast, G.: Quality aspects of the Wegener Center multi-satellite GPS radio occultation record OPSv5.6, Atmos. Meas. Tech., 10, 4845–4863, https://doi.org/10.5194/amt-10-4845-2017, 2017.
Aparicio, J. M. and Laroche, S.: An evaluation of the expression of the atmospheric refractivity for GPS signals, J. Geophys. Res., 116, D11104, https://doi.org/10.1029/2010JD015214, 2011.
Austrian Science Fund (FWF): Doctoral program “Climate Change: Uncertainties, Thresholds and Coping Strategies” (FWF DK W1256), Austrian Science Fund (FWF), https://doi.org/10.55776/W1256, 2023.
Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical weather prediction, Nature, 525, 47–55, https://doi.org/10.1038/nature14956, 2015.
Bevis, M. Businger, S., Herring, A. T., Rocken, C., Anthes, R. A., and Ware, R. H.: Remote sensing of atmospheric water vapor using the global positioning system, J. Geophys. Res.-Atmos., 97, 15787–15801, https://doi.org/10.1029/92JD01517, 1992.
Bouma, H. R. and Stoew, B.: GPS observations of daily variations in the atmospheric water vapor content, Phys. Chem. Earth A, 26, 389–392, https://doi.org/10.1016/S1464-1895(01)00071-0, 2001.
Businger, S., Chiswell, S. R., Bevis, M., Duan, J., Anthes, R. A., Rocken, C., Ware, R. H., Exner, M., Hove, T. V., and Solheim, F.: The promise of GPS in atmospheric monitoring, B. Am. Meteorol. Soc., 77, 5–18, https://doi.org/10.1175/1520-0477(1996)077<0005:TPOGIA>2.0.CO;2, 1996.
Cucurull, L. and Derber, J. C.,: Operational implementation of COSMIC observations into the NCEP global data assimilation system, Weather Forecast., 23, 702–711, https://doi.org/10.1175/2008WAF2007070.1, 2008.
Dai, A., Wang, J., Ware, R. H., and Hove, T.: Diurnal variation in water over North America and its implications for sampling errors in radiosonde humidity, J. Geophys. Res., 107, ACL 11-1–ACL 11-14, https://doi.org/10.1029/2001JD000642, 2002.
Danzer, J., Foelsche, U., Scherllin-Pirscher, B., and Schwärz, M.: Influence of changes in humidity on dry temperature in GPS RO climatologies, Atmos. Meas. Tech., 7, 2883–2896, https://doi.org/10.5194/amt-7-2883-2014, 2014.
DeFlorio, M. J., Waliser, D. E., Guan, B., Lavers, D. A., Ralph, F. M., and Vitart, F.: Global Assessment of Atmospheric River Prediction Skill, J. Hydrometeorol., 19, 409–426, https://doi.org/10.1175/JHM-D-17-0135.1, 2018.
Demirdjian, R., Doyle, J. D., Reynolds, C. A., Norris, J. R., Michaelis, A. C., and Ralph, F. M.: A Case Study of the Physical Processes Associated with the Atmospheric River Initial-Condition Sensitivity from an Adjoint Model, J. Atmos. Sci., 77, 691–709, https://doi.org/10.1175/JAS-D-19-0155.1, 2020.
Doyle, J. D., Amerault, C., Reynolds, C. A., and Reinecke, P. A.: Initial condition sensitivity and predictability of a severe extratropical cyclone using a moist adjoint, Mon. Weather Rev., 142, 320–342, https://doi.org/10.1175/MWR-D-13-00201.1, 2014
Elsaesser, G. S. and Kummerow, C. D.: Toward a fully parametric retrieval of the nonraining parameters over the global oceans, J. Appl. Meteorol. Clim., 47, 1599–1618, https://doi.org/10.1175/2007jamc1712.1, 2008.
Emardson, T. R., Elgered, G., and Johansson, J. M.: Three months of continuous monitoring of atmospheric water vapor with a network of Global Positioning System receivers, J. Geophys. Res., 103, 1807–1820, https://doi.org/10.1029/97JD03015, 1998.
Foelsche, U., Borsche, M., Steiner, A. K., Gobiet, A., Pirscher, B., Kirchengast, G., Wickert, J., and Schmidt, T.: Observing upper troposphere-lower stratosphere climate with radio occultation data from the CHAMP satellite, Clim. Dynam., 31, 49–65, https://doi.org/10.1007/s00382-007-0337-7, 2008.
Foelsche, U., Scherllin-Pirscher, B., Ladstädter, F., Steiner, A. K., and Kirchengast, G.: Refractivity and temperature climate records from multiple radio occultation satellites consistent within 0.05 %, Atmos. Meas. Tech., 4, 2007–2018, https://doi.org/10.5194/amt-4-2007-2011, 2011a.
Foelsche, U., Syndergaard, S., Fritzer, J., and Kirchengast, G.: Errors in GNSS radio occultation data: relevance of the measurement geometry and obliquity of profiles, Atmos. Meas. Tech., 4, 189–199, https://doi.org/10.5194/amt-4-189-2011, 2011b.
Gorbunov, M. E., Benzon, H. H., Jensen, A. S., Lohmann, M. S., and Nielsen, A. S.: Comparative analysis of radio occultation processing approaches based on Fourier integral operators, Radio Sci., 39, RS6004, https://doi.org/10.1029/2003RS002916, 2004.
Güldner, J.: Validation of integrated water vapor using independent measurement techniques, Phys. Chem. Earth A, 26, 427–431, https://doi.org/10.1016/S1464-1895(01)00078-3, 2001.
Hajj, G. A., Kursinski, E. R., Romans, L. J., Bertiger, W. I., and Leroy, S. S.: A technical description of atmospheric sounding by GPS occultation, J. Atmos. Sol. Terr. Phys., 64, 451–469, https://doi.org/10.1016/S1364-6826(01)00114-6, 2002.
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., Fernández del Río, J., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E.: Array programming with NumPy, Nature, 585, 357–362, https://doi.org/10.1038/s41586-020-2649-2, 2020 (code available at: https://numpy.org/, last access: 18 May 2025).
Healy, S. B. and Eyre, J. R.: Observing system simulation experiments for radio occultation from low-Earth-orbiting satellites, Q. J. Roy. Meteor. Soc., 140, 1027–1041, https://doi.org/10.1002/qj.2195, 2014.
Healy, S. B. and Thépaut, J. N.: Assimilation experiments with CHAMP GPS radio occultation measurements, Q. J. Roy. Meteor. Soc., 132, 605–623, 2006.
Hoyer, S. and Hamman, J. J.: xarray: ND labeled arrays and datasets in Python, J. Open Res. Softw., 5, 10, https://doi.org/10.5334/jors.148, 2017 (code available at: https://docs.xarray.dev/en/stable/, last access: 8 June 2025).
Hunter, J. D.: Matplotlib: A 2D graphics environment, Comput. Sci. Eng., 9, 90–95, https://doi.org/10.1109/MCSE.2007.55, 2007 (code available at: https://matplotlib.org/, last access: 18 May 2025).
Kirchengast, G., Fritzer, J., and Schwärz, M.: ESA-OPSGRAS – Reference Occultation Processing System (OPS) for GRAS on MetOp and Other Past and Future RO Missions, WEGC-IGAM/UniGraz Proposal to ESA/ESTEC, Doc-Id: WEGC/ESA-OPSGRAS/Prop/v4May10, 2010.
Kursinski, E. R., Hajj, G. A., Hardy, K. R., Romans, L. J., and Schofield, J. T.: Observing tropospheric water vapor by radio occultation using the Global Positioning System, Geophys. Res. Lett., 22, 2365–2368, https://doi.org/10.1029/95GL02127, 1995.
Kursinski, E. R., Hajj, G. A., Schofield, J. T., Linfield, R. P., and Hardy, K. R.: Observing Earth's atmosphere with radio occultation measurements using the Global Positioning System, J. Geophys. Res, 102, 23429–23465, https://doi.org/10.1029/97JD01569, 1997.
Li, Y., Yuan, Y., and Wang, X.: Assessments of the Retrieval of Atmospheric Profiles from GNSS Radio Occultation Data in Moist Tropospheric Conditions Using Radiosonde Data, Remote Sens., 12, 2717, https://doi.org/10.3390/rs12172717, 2020.
Lorenz, E. N.: The predictability of a flow which possesses many scales of motion, Tellus, 21, 289–307, https://doi.org/10.3402/tellusa.v21i3.10086, 1969.
Ma, Z., Kuo, Y. -H., Ralph, F. M., Neiman, P. J., Wick, G. A., Sukovich, E., and Wang, B.: Assimilation of GPS radio occultation data for an intense atmospheric river with the NCEP regional GSI system, Mon. Weather Rev., 139, 2170-2183, https://doi.org/10.1175/2011MWR3342.1, 2011.
McKinney, W.: Data structures for statistical computing in Python, in: Proceedings of the 9th Python in Science Conference, Austin, Texas, USA, 28 June–3 July 2010, edited by: van der Walt, S. and Millman, J., 51–56, https://doi.org/10.25080/Majora-92bf1922-00a, 2010 (code available at: https://pandas.pydata.org/, last access: 18 May 2025).
Melbourne, W. G.: The application of spaceborne GPS to atmospheric limb sounding and global change monitoring, JPL Publ., 147, 1–26, 1994.
Murphy, M. J. and Haase, J.: Evaluation of GNSS Radio Occultation Profiles in the Vicinity of Atmospheric Rivers, Atmosphere, 13, 1495, https://doi.org/10.3390/atmos13091495, 2022.
Neiman, P. J., Ralph, F. M., Wick, G. A., Kuo, Y.-H., Wee, T.-K., Ma, Z., Taylor, G. H., and Dettinger, M. D.: Diagnosis of an Intense Atmospheric River Impacting the Pacific Northwest: Storm Summary and Offshore Vertical Structure Observed with COSMIC Satellite Retrievals, Mon. Weather Rev., 136, 4398, https://doi.org/10.1175/2008MWR2550.1, 2008a.
Neiman, P. J., Ralph, F. M., Wick, G. A., Lundquist, J. D., and Dettinger, M. D.: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the West Coast of North America based on eight years of SSM/I satellite observations, J. Hydrometeorol., 9, 22–47, https://doi.org/10.1175/2007JHM855.1, 2008b.
NESDIS STAR: MiRS Sensors – SSMIS Overview, NESDIS STAR, https://www.star.nesdis.noaa.gov/mirs/ssmis.php (last access: 30 April 2024), 2024.
Ota, Y., Derber, J. C., Kalnay, E., and Miyoshi, T.: Ensemble-based observation impact estimates using the NCEP GFS, Tellus A, 65, 20038, https://doi.org/10.3402/tellusa.v65i0.20038, 2013.
Parracho, A. C., Bock, O., and Bastin, S.: Global IWV trends and variability in atmospheric reanalyses and GPS observations, Atmos. Chem. Phys., 18, 16213–16237, https://doi.org/10.5194/acp-18-16213-2018, 2018.
Pierce, D.: netCDF4-python, Unidata, NetCDF4, GitHub [code], https://github.com/Unidata/netcdf4-python (last access: 8 June 2025), 2022.
Python Software Foundation: Python Language Reference, version 3.11, Python Software Foundation [code], https://www.python.org/ (last access: 18 May 2025), 2022.
Ralph, F. M., Neiman, P. J., Kingsmill, D. E., Persson, P. O. G., White, A. B., Strem, E. T., Andrews, E. D., and Antweiler, R. C.: The impact of a prominent rain shadow on flooding in California's Santa Cruz Mountains: A CALJET case study and sensitivity to the ENSO cycle, J. Hydrometeorol., 4, 1243–1264, https://doi.org/10.1175/1525-7541(2003)004<1243:TIOAPR>2.0.CO;2, 2003.
Ralph, F. M., Neiman, P. J., and Wick, G. A.: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98, Mon. Weather Rev., 132, 1721–1745, https://doi.org/10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2, 2004.
Ralph, F. M., Neiman, P. J., Wick, G. A., Gutman, S. I., Dettinger, M. D., Cayan, D. R., and White, A. B.: Flooding on California's Russian River: The role of atmospheric rivers, Geophys. Res. Lett., 33, L13801, https://doi.org/10.1029/2006GL026689, 2006.
Randel, W. J., Johnston, B. R., Braun, J. J., Sokolovskiy, S., Vömel, H., Podglajen, A., and Legras, B.: Stratospheric Water Vapor from the Hunga Tonga–Hunga Ha'apai Volcanic Eruption Deduced from COSMIC-2 Radio Occultation, Remote Sens., 15, 2167, https://doi.org/10.3390/rs15082167, 2023.
Reynolds, C. A., Doyle, J. D., Ralph, F. M., and Demirdjian, R.: Adjoint sensitivity of North Pacific atmospheric river forecasts, Mon. Weather Rev., 147, 1871–1897, https://doi.org/10.1175/MWR-D-18-0347.1, 2019
Rieckh, T., Anthes, R., Randel, W., Ho, S.-P., and Foelsche, U.: Tropospheric dry layers in the tropical western Pacific: comparisons of GPS radio occultation with multiple data sets, Atmos. Meas. Tech., 10, 1093–1110, https://doi.org/10.5194/amt-10-1093-2017, 2017.
Rieckh, T., Anthes, R., Randel, W., Ho, S.-P., and Foelsche, U.: Evaluating tropospheric humidity from GPS radio occultation, radiosonde, and AIRS from high-resolution time series, Atmos. Meas. Tech., 11, 3091–3109, https://doi.org/10.5194/amt-11-3091-2018, 2018.
Rocken, C., Anthes, R., Exner, M., Hunt, D., Sokolovskiy, S., Ware, R., Gorbunov, M., Schreiner, W., Feng, D., Herman, B., Kuo, Y. H., and Zou, X.: Analysis and validation of GPS/MET data in the neutral atmosphere, J. Geophys. Res, 102, 29849–29866, https://doi.org/10.1029/97JD02400, 1997.
Scherllin-Pirscher, B., Kirchengast, G., Steiner, A. K., Kuo, Y.-H., and Foelsche, U.: Quantifying uncertainty in climatological fields from GPS radio occultation: an empirical-analytical error model, Atmos. Meas. Tech., 4, 2019–2034, https://doi.org/10.5194/amt-4-2019-2011, 2011.
Schluessel, P. and Emery, W. J.: Atmospheric water vapor over oceans from SSM/I measurements, Int. J. Remote Sens., 11, 753–766, https://doi.org/10.1080/01431169008955055, 1990.
Schwärz, M., Kirchengast, G., Scherllin-Pirscher, B., Schwarz, J., Ladstädter, F., and Angerer, B.: Multi-mission validation by satellite radio occultation extension project–Final report, Tech. Rep. for ESA/ESRIN No. 01/2016, Wegener Center, University of Graz, Graz, Austria, https://wegcwww.uni-graz.at/publ/wegcpubl/arsclisys/2016/Schwaerz-etal_MMValRO-FinRep_Dec2016.pdf (last access: 30 October 2023), 2016.
Smith, E. K. and Weintraub, S.: The constants in the equation for atmospheric refractive index at radio frequencies, Proc. IRE, 41, 1035–1037, https://doi.org/10.1109/JRPROC.1953.274297, 1953.
Steiner, A. K., Kirchengast, G., and Ladreiter, H. P.: Inversion, error analysis, and validation of GPS/MET occultation data, Ann. Geophys., 17, 122–138, https://doi.org/10.1007/s00585-999-0122-5, 1999.
Steiner, A. K., Kirchengast, G., Foelsche, U., Kornblueh, L., Manzini, E., and Bengtsson, L.: GNSS occultation sounding for climate monitoring, Phys. Chem. Earth A, 26, 113–124, https://doi.org/10.1016/S1464-1895(01)00034-5, 2001.
Stohl, A., Forster, C., and Sodemann, H.: Remote sources of water vapor forming precipitation on the Norwegian west coast at 60° N – A tale of hurricanes and an atmospheric river, J. Geophys. Res., 113, D05102, https://doi.org/10.1029/2007JD009006, 2008.
Stone, R. E., Reynolds, C. A., Doyle, J. D., Langland, R. H., Baker, N. L., Lavers, D. A., and Ralph, F. M.: Atmospheric River Reconnaissance Observation Impact in the Navy Global Forecast System, Mon. Weather Rev., 148, 763–782, https://doi.org/10.1175/MWR-D-19-0101.1, 2020
Stull, R.: Practical Meteorology: An Algebra-based Survey of Atmospheric Science, version 1.02b, Chap. 4, Univ. of British Columbia, 940 pp., 87–118, ISBN 978-0-88865-283-6, 2017.
UCAR COSMIC Program: COSMIC-1 Data Products, UCAR/NCAR – COSMIC [data set], https://doi.org/10.5065/ZD80-KD74, 2022.
Ware, R., Exner, M., Feng, D., Gorbunov, M., Hardy, K., Herman, B., Kuo, Y. H., Meehan, T. K., Melbourne, W., Rocken, C., Schreiner, W., Sokolovskiy, S., Solheim, F., Zou, X., Anthes, R. A., Businger, S., and Trenberth, K.: GPS sounding of the atmosphere from low Earth orbit: Preliminary results, B. Am. Meteorol. Soc., 77, 19–40, https://doi.org/10.1175/1520-0477(1996)077<0019:GSOTAF>2.0.CO;2, 1996.
Wentz, F. J. and Spencer, R. W.: SSM/I rain retrievals within a unified all-weather ocean algorithm, J. Atmos. Sci., 55, 1613–1627, https://doi.org/10.1175/1520-0469(1998)055<1613:SIRRWA>2.0.CO;2, 1998.
Wentz, F. J., Hilburn K. A., and Smith, D. K.: Remote Sensing Systems DMSP SSMI/S Daily Environmental Suite on 0.25 deg grid, Version 7, Remote Sensing Systems, Santa Rosa, CA [data set], https://www.remss.com/missions/ssmi (last access: 8 June 2025), 2012.
Xie, F., Haase, J. S., and Syndergaard, S.: Profiling the atmosphere using the airborne GPS radio occultation technique: a sensitivity study, IEEE T. Geosci. Remote, 46, 3424–3435, https://doi.org/10.1109/TGRS.2008.2004713, 2008.
Xue, Y., Li, J., Menzel, W. P., Borbas, E., Ho, S.-P., Li, Z., and Li, J.: Characteristics of satellite sampling errors in total precipitable water from SSMIS, HIRS, and COSMIC observations, J. Geophys. Res.-Atmos., 124, 6966–6981, https://doi.org/10.1029/2018JD030045, 2019.
Zeng, Z., Sokolovskiy, S., Schreiner, W. S., and Hunt, D.: Representation of vertical atmospheric structures by radio occultation observations in the UTLS: comparison to high-resolution radiosonde profiles, J. Atmos. Ocean. Techn., 36, 655–670, https://doi.org/10.1175/JTECH-D-18-0105.1, 2019.
Zhu, Y. and Newell, R. E.: A proposed algorithm for moisture fluxes from atmospheric rivers, Mon. Weather Rev., 126, 725–735, https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2, 1998.
Executive editor
Atmospheric rivers (ARs) are recognized as significant contributors to extreme precipitation at mid-latitudes and may increase in frequency and intensity due to climate change. This timely study is the first the show the potential value of GNSS radio occultation (GNSS RO) remote sensing to the study of ARs and in particular how the high vertical resolution of GNSS RO provides information that is complementary to other techniques. The combination of GNSS-RO data with mesoscale models, particularly through assimilation, could further improve our understanding of AR dynamics and the processes leading to extreme precipitation and flooding. This is an important direction for future studies.
Atmospheric rivers (ARs) are recognized as significant contributors to extreme precipitation at...
Short summary
The study investigates using Global Navigation Satellite System Radio Occultation (GNSS-RO) to analyze the vertical structure of humidity in atmospheric rivers (ARs). Specific humidity and integrated water vapor from the COSMIC Data Analysis and Archive Center (CDAAC) and the Wegener Center (WEGC) are compared with the Special Sensor Microwave Imager/Sounder (SSMIS), showing that GNSS-RO adds vertically resolved data. Despite a slight low bias, combining GNSS-RO and SSMIS improves AR analysis.
The study investigates using Global Navigation Satellite System Radio Occultation (GNSS-RO) to...