Articles | Volume 18, issue 11
https://doi.org/10.5194/amt-18-2481-2025
https://doi.org/10.5194/amt-18-2481-2025
Research article
 | Highlight paper
 | 
12 Jun 2025
Research article | Highlight paper |  | 12 Jun 2025

The potential of observing atmospheric rivers with Global Navigation Satellite System (GNSS) radio occultation

Bahareh Rahimi and Ulrich Foelsche

Related authors

Precipitation reconstructions for Paris based on the observations by Louis Morin, 1665–1713 CE
Thomas Pliemon, Ulrich Foelsche, Christian Rohr, and Christian Pfister
Clim. Past, 19, 2237–2256, https://doi.org/10.5194/cp-19-2237-2023,https://doi.org/10.5194/cp-19-2237-2023, 2023
Short summary
Subdaily meteorological measurements of temperature, direction of the movement of the clouds, and cloud cover in the Late Maunder Minimum by Louis Morin in Paris
Thomas Pliemon, Ulrich Foelsche, Christian Rohr, and Christian Pfister
Clim. Past, 18, 1685–1707, https://doi.org/10.5194/cp-18-1685-2022,https://doi.org/10.5194/cp-18-1685-2022, 2022
Short summary
Climate history of the principality of Transylvania during the Maunder Minimum (MM) years (1645–1715 CE)
Martin Stangl and Ulrich Foelsche
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-117,https://doi.org/10.5194/cp-2021-117, 2021
Manuscript not accepted for further review
Short summary
Evaluation of Integrated Nowcasting through Comprehensive Analysis (INCA) precipitation analysis using a dense rain-gauge network in southeastern Austria
Esmail Ghaemi, Ulrich Foelsche, Alexander Kann, and Jürgen Fuchsberger
Hydrol. Earth Syst. Sci., 25, 4335–4356, https://doi.org/10.5194/hess-25-4335-2021,https://doi.org/10.5194/hess-25-4335-2021, 2021
Short summary

Cited articles

Alley, R. B., Emanuel, K. A., and Zhang, F.: Advances in weather prediction, Science, 363, 342–344, https://doi.org/10.1126/science.aav7274, 2019 
Angerer, B., Ladstädter, F., Scherllin-Pirscher, B., Schwärz, M., Steiner, A. K., Foelsche, U., and Kirchengast, G.: Quality aspects of the Wegener Center multi-satellite GPS radio occultation record OPSv5.6, Atmos. Meas. Tech., 10, 4845–4863, https://doi.org/10.5194/amt-10-4845-2017, 2017. 
Aparicio, J. M. and Laroche, S.: An evaluation of the expression of the atmospheric refractivity for GPS signals, J. Geophys. Res., 116, D11104, https://doi.org/10.1029/2010JD015214, 2011. 
Austrian Science Fund (FWF): Doctoral program “Climate Change: Uncertainties, Thresholds and Coping Strategies” (FWF DK W1256), Austrian Science Fund (FWF), https://doi.org/10.55776/W1256, 2023. 
Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical weather prediction, Nature, 525, 47–55, https://doi.org/10.1038/nature14956, 2015. 
Download
Executive editor
Atmospheric rivers (ARs) are recognized as significant contributors to extreme precipitation at mid-latitudes and may increase in frequency and intensity due to climate change. This timely study is the first the show the potential value of GNSS radio occultation (GNSS RO) remote sensing to the study of ARs and in particular how the high vertical resolution of GNSS RO provides information that is complementary to other techniques. The combination of GNSS-RO data with mesoscale models, particularly through assimilation, could further improve our understanding of AR dynamics and the processes leading to extreme precipitation and flooding. This is an important direction for future studies.
Short summary
The study investigates using Global Navigation Satellite System Radio Occultation (GNSS-RO) to analyze the vertical structure of humidity in atmospheric rivers (ARs). Specific humidity and integrated water vapor from the COSMIC Data Analysis and Archive Center (CDAAC) and the Wegener Center (WEGC) are compared with the Special Sensor Microwave Imager/Sounder (SSMIS), showing that GNSS-RO adds vertically resolved data. Despite a slight low bias, combining GNSS-RO and SSMIS improves AR analysis.
Share