Articles | Volume 18, issue 15
https://doi.org/10.5194/amt-18-3781-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-18-3781-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Analysis of hygroscopic cloud seeding materials using the Korea Cloud Physics Experimental Chamber (K-CPEC): a case study for powder-type sodium chloride and calcium chloride
Research Applications Department, National Institute of Meteorological Sciences, Seogwipo, Jeju 63568, Republic of Korea
Miloslav Belorid
Research Applications Department, National Institute of Meteorological Sciences, Seogwipo, Jeju 63568, Republic of Korea
Joo Wan Cha
Research Applications Department, National Institute of Meteorological Sciences, Seogwipo, Jeju 63568, Republic of Korea
Youngmi Kim
Research Applications Department, National Institute of Meteorological Sciences, Seogwipo, Jeju 63568, Republic of Korea
Seungbum Kim
Research Applications Department, National Institute of Meteorological Sciences, Seogwipo, Jeju 63568, Republic of Korea
Related authors
Bu-Yo Kim, Joo Wan Cha, and Yong Hee Lee
Atmos. Meas. Tech., 16, 5403–5413, https://doi.org/10.5194/amt-16-5403-2023, https://doi.org/10.5194/amt-16-5403-2023, 2023
Short summary
Short summary
A camera-based imager and convolutional neural network (CNN) were used to estimate ground cloud cover. Image data from 2019 were used for training and validation, and those from 2020 were used for testing. The CNN model exhibited high performance, with an accuracy of 0.92, RMSE of 1.40 tenths, and 93% agreement with observed cloud cover within ±2 tenths' difference. It also outperformed satellites and ceilometers and proved to be the most suitable for ground-based cloud cover estimation.
Bu-Yo Kim, Joo Wan Cha, and Ki-Ho Chang
Atmos. Meas. Tech., 14, 6695–6710, https://doi.org/10.5194/amt-14-6695-2021, https://doi.org/10.5194/amt-14-6695-2021, 2021
Short summary
Short summary
This study investigates a method for 24 h cloud cover calculation using a camera-based imager and supervised machine learning methods. The cloud cover is calculated by learning the statistical characteristics of the ratio, difference, and luminance using RGB channels of the image with a machine learning model. The proposed approach is suitable for nowcasting because it has higher learning and prediction speed than the method in which the many pixels of a 2D image are learned.
Eui-Jong Kang, Byung-Ju Sohn, Sang-Woo Kim, Wonho Kim, Young-Cheol Kwon, Seung-Bum Kim, Hyoung-Wook Chun, and Chao Liu
Geosci. Model Dev., 17, 8553–8568, https://doi.org/10.5194/gmd-17-8553-2024, https://doi.org/10.5194/gmd-17-8553-2024, 2024
Short summary
Short summary
Sea surface temperature (SST) is vital in climate, weather, and ocean sciences because it influences air–sea interactions. Errors in the ECMWF model's scheme for predicting ocean skin temperature prompted a revision of the ocean mixed layer model. Validation against infrared measurements and buoys showed a good correlation with minimal deviations. The revised model accurately simulates SST variations and aligns with solar radiation distributions, showing promise for weather and climate models.
Jeonggyu Kim, Sungmin Park, Greg M. McFarquhar, Anthony J. Baran, Joo Wan Cha, Kyoungmi Lee, Seoung Soo Lee, Chang Hoon Jung, Kyo-Sun Sunny Lim, and Junshik Um
Atmos. Chem. Phys., 24, 12707–12726, https://doi.org/10.5194/acp-24-12707-2024, https://doi.org/10.5194/acp-24-12707-2024, 2024
Short summary
Short summary
We developed idealized models to represent the shapes of ice particles found in deep convective clouds and calculated their single-scattering properties. By comparing these results with in situ measurements, we discovered that a mixture of shape models matches in situ measurements more closely than single-form models or aggregate models. This finding has important implications for enhancing the simulation of single-scattering properties of ice crystals in deep convective clouds.
Bu-Yo Kim, Joo Wan Cha, and Yong Hee Lee
Atmos. Meas. Tech., 16, 5403–5413, https://doi.org/10.5194/amt-16-5403-2023, https://doi.org/10.5194/amt-16-5403-2023, 2023
Short summary
Short summary
A camera-based imager and convolutional neural network (CNN) were used to estimate ground cloud cover. Image data from 2019 were used for training and validation, and those from 2020 were used for testing. The CNN model exhibited high performance, with an accuracy of 0.92, RMSE of 1.40 tenths, and 93% agreement with observed cloud cover within ±2 tenths' difference. It also outperformed satellites and ceilometers and proved to be the most suitable for ground-based cloud cover estimation.
Bu-Yo Kim, Joo Wan Cha, and Ki-Ho Chang
Atmos. Meas. Tech., 14, 6695–6710, https://doi.org/10.5194/amt-14-6695-2021, https://doi.org/10.5194/amt-14-6695-2021, 2021
Short summary
Short summary
This study investigates a method for 24 h cloud cover calculation using a camera-based imager and supervised machine learning methods. The cloud cover is calculated by learning the statistical characteristics of the ratio, difference, and luminance using RGB channels of the image with a machine learning model. The proposed approach is suitable for nowcasting because it has higher learning and prediction speed than the method in which the many pixels of a 2D image are learned.
Junshik Um, Greg M. McFarquhar, Jeffrey L. Stith, Chang Hoon Jung, Seoung Soo Lee, Ji Yi Lee, Younghwan Shin, Yun Gon Lee, Yiseok Isaac Yang, Seong Soo Yum, Byung-Gon Kim, Joo Wan Cha, and A-Reum Ko
Atmos. Chem. Phys., 18, 16915–16930, https://doi.org/10.5194/acp-18-16915-2018, https://doi.org/10.5194/acp-18-16915-2018, 2018
Short summary
Short summary
During the 2012 Deep Convective Clouds and Chemistry experiment upper anvils of two storms were sampled. The occurrence of well-defined pristine crystals was low in the anvils, while single frozen droplets and frozen droplet aggregates (FDAs) were the dominant habits. A new algorithm was developed to automatically identify the number, size, and relative position of element frozen droplets within FDAs. The morphological characteristics of FDAs were compared with those of black carbon aggregates.
Seoung Soo Lee, Zhanqing Li, Yuwei Zhang, Hyelim Yoo, Seungbum Kim, Byung-Gon Kim, Yong-Sang Choi, Jungbin Mok, Junshik Um, Kyoung Ock Choi, and Danhong Dong
Atmos. Chem. Phys., 18, 13–29, https://doi.org/10.5194/acp-18-13-2018, https://doi.org/10.5194/acp-18-13-2018, 2018
Short summary
Short summary
This paper compares the contribution of resolutions with that of parameterizations to errors in the simulations of clouds, precipitation, and their interactions with aerosol in numerical weather prediction (NWP) models. This comparison shows that resolutions contribute to errors to a much greater degree than microphysics parameterizations. This finding provides a useful guideline for how to develop NWP models and has not been discussed in previous studies.
Related subject area
Subject: Clouds | Technique: Laboratory Measurement | Topic: Data Processing and Information Retrieval
In situ characterization of mixed phase clouds using the Small Ice Detector and the Particle Phase Discriminator
P. Vochezer, E. Järvinen, R. Wagner, P. Kupiszewski, T. Leisner, and M. Schnaiter
Atmos. Meas. Tech., 9, 159–177, https://doi.org/10.5194/amt-9-159-2016, https://doi.org/10.5194/amt-9-159-2016, 2016
Short summary
Short summary
To study clouds constituting of liquid droplets as well as ice particles we used the latest versions of the Small Ice Detector which record high resolution scattering patterns of individual small cloud particles. In the case of a droplet its precise size is obtained and for ice particles its shape is deduced from the scattering pattern.We present results from artificial clouds at the AIDA cloud chamber and natural clouds probed at a mountain top station as well as from an aircraft in the arctic.
Cited articles
Bruintjes, R. T.: A review of cloud seeding experiments to enhance precipitation and some new prospects, Bull. Am. Meteorol. Soc., 80, 805–820, https://doi.org/10.1175/1520-0477(1999)080<0805:AROCSE>2.0.CO;2, 1999.
Buck Research Instruments: Model 1011C hygrometer operating manual, Buck Research Instruments, https://www.hygrometers.com/wp-content/uploads/1011C-users-manual-2009-12.pdf (last access: 12 April 2025), 2009.
Cha, J. W., Jung, W., Chae, S., Ko, A., Ro, Y., Chang, K. H., Ha, J. C., Park, D. O., Hwang, H. J., Kim, M. H., Kim, K. E., and Ku, J. M.: Analysis of results and techniques about precipitation enhancement by aircraft seeding in Korea, Atmosphere, 29, 481–499, https://doi.org/10.14191/Atmos.2019.29.4.481, 2019.
Cha, J. W., Kim, B. Y., Belorid, M., Ro, Y., Ko, A. R., Kim, S. H., Park, D. H., Park, J. M., Koo, H. J., Chang, K. H., Lee, Y. H., and Kim, S.: Study on weather modification hybrid rocket experimental design and application, Atmosphere, 34, 203–216, https://doi.org/10.14191/Atmos.2024.34.2.203, 2024a.
Cha, J. W., Kim, Y., Belorid, M., Kim, B. Y., Baek, J., Kim, S., Lee, K., Cho, C., and Lee, S.: Development of Korea's First Large Scale Advanced Cloud Physics Experimental Chamber (I): Design of the Cloud Physics Experimental Chamber System and Detailed Structural Analysis of the Cloud Chamber, J. Environ. Sci. Int., 33, 957–975, https://doi.org/10.5322/JESI.2024.33.12.957, 2024b.
Chang, K., Bench, J., Brege, M., Cantrell, W., Chandrakar, K., Ciochetto, D., Mazzoleni, C., Mazzoleni, L. R., Niedermeier, D., and Shaw, R. A.: A laboratory facility to study gas–aerosol–cloud interactions in a turbulent environment: The Π chamber, B. Am. Meteorol. Soc., 97, 2343–2358, https://doi.org/10.1175/BAMS-D-15-00203.1, 2016.
Chen, J., Rösch, C., Rösch, M., Shilin, A., and Kanji, Z. A.: Critical size of silver iodide containing glaciogenic cloud seeding particles, Geophys. Res. Lett., 51, e2023GL106680, https://doi.org/10.1029/2023GL106680, 2024.
Cheng, L., Jia, Y. H., Li, F. F., and Qiu, J.: Cloud chamber experimental study for acoustic fog elimination technology, Appl. Acoust., 219, 109885, https://doi.org/10.1016/j.apacoust.2024.109885, 2024.
Connolly, P. J., Flynn, M. J., Ulanowski, Z., Choularton, T. W., Gallagher, M. W., and Bower, K. N.: Calibration of the cloud particle imager probes using calibration beads and ice crystal analogs: The depth of field, J. Atmos. Ocean. Tech., 24, 1860–1879, https://doi.org/10.1175/JTECH2096.1, 2007.
Cotton, R. J., Benz, S., Field, P. R., Möhler, O., and Schnaiter, M.: Technical Note: A numerical test-bed for detailed ice nucleation studies in the AIDA cloud simulation chamber, Atmos. Chem. Phys., 7, 243–256, https://doi.org/10.5194/acp-7-243-2007, 2007.
Dias, A., Ehrhart, S., Vogel, A., Williamson, C., Almeida, J., Kirkby, J., Mathot, S., Mumford, S., and Onnela, A.: Temperature uniformity in the CERN CLOUD chamber, Atmos. Meas. Tech., 10, 5075–5088, https://doi.org/10.5194/amt-10-5075-2017, 2017.
Ding, D., Rasmussen, O. S., and Qin, M.: Moisture buffer value for hygroscopic materials with different thicknesses, Build. Environ., 258, 111581, https://doi.org/10.1016/j.buildenv.2024.111581, 2024.
Dong, X. B., Mai, R., and Li, J. X.: Aircraft measurements of aerosol and CCN for airborne glaciogenic and hygroscopic seeding agents for cold and warm cloud seeding, Meteorol. Mon., 49, 985–994, https://doi.org/10.7519/j.issn.1000-0526.2023.050601, 2023.
Drofa, A. S., Ivanov, V. N., Rosenfeld, D., and Shilin, A. G.: Studying an effect of salt powder seeding used for precipitation enhancement from convective clouds, Atmos. Chem. Phys., 10, 8011–8023, https://doi.org/10.5194/acp-10-8011-2010, 2010.
Field, P. R., Cotton, R. J., Johnson, D., Noone, K., Glantz, P., Kaye, P. H., Hirst, E., Greenaway, R. S., Jost, C., Gabriel, R., Reiner, T., Andreae, M., Saunders, C. P. R., Archer, A., Choularton, T., Smith, M., Brooks, B., Hoell, C., Bandy, B., and Heymsfield, A.: Ice nucleation in orographic wave clouds: Measurements made during INTACC, Q. J. Roy. Meteor. Soc., 127, 1493–1512, https://doi.org/10.1002/qj.49712757502, 2001.
Flossmann, A. I., Manton, M., Abshaev, A., Bruintjes, R., Murakami, M., Prabhakaran, T., and Yao, Z.: Review of advances in precipitation enhancement research, B. Am. Meteorol. Soc., 100, 1465–1480, https://doi.org/10.1175/BAMS-D-18-0160.1, 2019.
Fountoukis, C. and Nenes, A.: ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+–Ca2+–Mg2+– –Na+– – –Cl−–H2O aerosols, Atmos. Chem. Phys., 7, 4639–4659, https://doi.org/10.5194/acp-7-4639-2007, 2007.
Frey, W., Hu, D., Dorsey, J., Alfarra, M. R., Pajunoja, A., Virtanen, A., Connolly, P., and McFiggans, G.: The efficiency of secondary organic aerosol particles acting as ice-nucleating particles under mixed-phase cloud conditions, Atmos. Chem. Phys., 18, 9393–9409, https://doi.org/10.5194/acp-18-9393-2018, 2018.
Grabowski, W. W., Thomas, L., and Kumar, B.: Impact of cloud-base turbulence on CCN activation: CCN distribution, J. Atmos. Sci., 79, 2965–2981, https://doi.org/10.1175/JAS-D-22-0075.1, 2022.
Guo, L., Gu, W., Peng, C., Wang, W., Li, Y. J., Zong, T., Tang, Y., Wu, Z., Lin, Q., Ge, M., Zhang, G., Hu, M., Bi, X., Wang, X., and Tang, M.: A comprehensive study of hygroscopic properties of calcium- and magnesium-containing salts: implication for hygroscopicity of mineral dust and sea salt aerosols, Atmos. Chem. Phys., 19, 2115–2133, https://doi.org/10.5194/acp-19-2115-2019, 2019.
Ham, Y. G., Jeong, Y., and Seo, E.: Distinct propagation to agricultural drought between two severe meteorological droughts in the Korean Peninsula, Geophys. Res. Lett., 51, e2024GL109927, https://doi.org/10.1029/2024GL109927, 2024.
He, Q. L., Xiao, J. L., and Shi, W. Y.: Responses of terrestrial evapotranspiration to extreme drought: a review, Water, 14, 3847, https://doi.org/10.3390/w14233847, 2022.
Hoppel, W. A., Frick, G. M., Fitzgerald, J. W., and Wattle, B. J.: A cloud chamber study of the effect that nonprecipitating water clouds have on the aerosol size distribution, Aerosol Sci. Tech., 20, 1–30, https://doi.org/10.1080/02786829408959660, 1994.
Hudson, J. G. and Noble, S.: CCN and vertical velocity influences on droplet concentrations and supersaturations in clean and polluted stratus clouds, J. Atmos. Sci., 71, 312–331, https://doi.org/10.1175/JAS-D-13-086.1, 2014.
Hung, H. M., Lu, W. J., Chen, W. N., Chang, C. C., Chou, C. C. K., and Lin, P. H.: Enhancement of the hygroscopicity parameter kappa of rural aerosols in northern Taiwan by anthropogenic emissions, Atmos. Environ., 84, 78–87, https://doi.org/10.1016/j.atmosenv.2013.11.032, 2014.
IPCC: Climate change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Pörtner, H.-O., Roberts, D. C., Tignor, M., Poloczanska, E. S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A., and Rama, B., Cambridge University Press, 3056 pp., https://doi.org/10.1017/9781009325844, 2022.
Jensen, E. J., Toon, O. B., Tabazadeh, A., Sachse, G. W., Anderson, B. E., Chan, K. R., Twohy, C. W., Gandrud, B., Aulenbach, S. M., Heymsfield, A., Hallett, J., and Gary, B.: Ice nucleation processes in upper tropospheric wave-clouds observed during SUCCESS, Geophys. Res. Lett., 25, 1363–1366, https://doi.org/10.1029/98GL00299, 1998.
Jung, W., Cha, J. W., Ko, A. R., Chae, S., Ro, Y., Hwang, H. J., Kim, B. Y., Ku, J. M., Chang, K. H., and Lee, C.: Progressive and prospective technology for cloud seeding experiment by unmanned aerial vehicle and atmospheric research aircraft in Korea, Adv. Meteorol., 2022, 3128657, https://doi.org/10.1155/2022/3128657, 2022.
Khvorostyanov, V. I. and Curry, J. A.: The theory of ice nucleation by heterogeneous freezing of deliquescent mixed CCN. Part I: Critical radius, energy, and nucleation rate, J. Atmos. Sci., 61, 2676–2691, https://doi.org/10.1175/JAS3266.1, 2004.
Kim, B. Y. and Cha, J. W.: Estimation of reference evapotranspiration in South Korea using GK-2A AMI channel data and a tree-based machine learning method, Sci. Remote Sens., 10, 100171, https://doi.org/10.1016/j.srs.2024.100171, 2024.
Kim, B. Y. and Cha, J. W.: Short-term prediction of hourly reference evapotranspiration in Gangwon State, South Korea, based on numerical weather prediction data, Sustain. Water Resour. Manag., 11, 63, https://doi.org/10.1007/s40899-025-01232-5, 2025.
Kim, B. Y., Cha, J. W., Ko, A. R., Jung, W., and Ha, J. C.: Analysis of the occurrence frequency of seedable clouds on the Korean Peninsula for precipitation enhancement experiments, Remote Sens., 12, 1487, https://doi.org/10.3390/rs12091487, 2020a.
Kim, B. Y., Cha, J. W., Jung, W., and Ko, A. R.: Precipitation enhancement experiments in catchment areas of dams: evaluation of water resource augmentation and economic benefits, Remote Sens., 12, 3730, https://doi.org/10.3390/rs12223730, 2020b.
Knowles, S. and Skidmore, M.: Cloud seeding and crop yields: Evaluation of the North Dakota Cloud Modification Project, Weather Clim. Soc., 13, 885–898, https://doi.org/10.1175/WCAS-D-21-0010.1, 2021.
Koppa, A., Rains, D., Hulsman, P., Poyatos, R., and Miralles, D. G.: A deep learning-based hybrid model of global terrestrial evaporation, Nat. Commun., 13, 1912, https://doi.org/10.1038/s41467-022-29543-7, 2022.
Koo, H. J., Belorid, M., Hwang, H. J., Kim, M. H., Kim, B. Y., Cha, J. W., Lee, Y. H., Baek, J., Jung, J. W., and Seo, S. K.: Development and Case Study of Unmanned Aerial Vehicles (UAVs) for Weather Modification Experiments, Atmosphere, 34, 35–53, https://doi.org/10.14191/Atmos.2024.34.1.035, 2024.
Kou, X., Chan, L. W., Sun, C. C., and Heng, P. W. S.: Preparation of slab-shaped lactose carrier particles for dry powder inhalers by air jet milling, Asian J. Pharm. Sci., 12, 59–65, https://doi.org/10.1016/j.ajps.2016.09.002, 2017.
Ku, J. M., Chang, K. H., Chae, S., Ko, A. R., Ro, Y., Jung, W., and Lee, C.: Preliminary results of cloud seeding experiments for air pollution reduction in 2020, Asia-Pac. J. Atmos. Sci., 59, 347–358, https://doi.org/10.1007/s13143-023-00315-7, 2023.
Kumar, P., Sokolik, I. N., and Nenes, A.: Cloud condensation nuclei activity and droplet activation kinetics of wet processed regional dust samples and minerals, Atmos. Chem. Phys., 11, 8661–8676, https://doi.org/10.5194/acp-11-8661-2011, 2011.
Kuo, W. C., Yamashita, K., Murakami, M., Tajiri, T., and Orikasa, N.: Numerical simulation on feasibility of rain enhancement by hygroscopic seeding over Kochi area, Shikoku, Japan, in early summer, J. Meteorol. Soc. Jpn., 102, 429–443, https://doi.org/10.2151/jmsj.2024-021, 2024.
Li, J., Wang, X., Chen, J., Zhu, C., Li, W., Li, C., Liu, L., Xu, C., Wen, L., Xue, L., Wang, W., Ding, A., and Herrmann, H.: Chemical composition and droplet size distribution of cloud at the summit of Mount Tai, China, Atmos. Chem. Phys., 17, 9885–9896, https://doi.org/10.5194/acp-17-9885-2017, 2017.
Li, R., Huang, M., Ding, D., Tian, P., Bi, K., Yang, S., and Yao, Z.: Warm cloud size distribution experiment based on 70 m3 expansion cloud chamber, J. Appl. Meteor. Sci., 34, 540–551, https://doi.org/10.11898/1001-7313.20230503, 2023.
Lim, Y. K., Kim, B. Y., Chang, K. H., Cha, J. W., and Lee, Y. H.: Analysis of PM10 reduction effects of artificial rain enhancement using numerical models, Atmosphere, 32, 341–351, https://doi.org/10.14191/Atmos.2022.32.4.341, 2022.
Lim, Y. K., Chang, K. H., Ro, Y., Ku, J. M., Chae, S., Koo, H. J., Kim, M. H., Park, D. O., Jung, W., Lee, K, Kim, S. H., Cha, J. W., and Lee, Y. H.: Analysis of Cloud Seeding Case Experiment in Connection with Republic of Korea Air Force Transport and KMA/NIMS Atmospheric Research Aircrafts, J. Environ. Sci. Int., 32, 899–914, https://doi.org/10.5322/JESI.2023.32.12.899, 2023.
Liu, H. J., Zhao, C. S., Nekat, B., Ma, N., Wiedensohler, A., van Pinxteren, D., Spindler, G., Müller, K., and Herrmann, H.: Aerosol hygroscopicity derived from size-segregated chemical composition and its parameterization in the North China Plain, Atmos. Chem. Phys., 14, 2525–2539, https://doi.org/10.5194/acp-14-2525-2014, 2014.
Loftus, A. M. and Cotton, W. R.: Examination of CCN impacts on hail in a simulated supercell storm with triple-moment hail bulk microphysics, Atmos. Res., 147, 183–204, https://doi.org/10.1016/j.atmosres.2014.04.017, 2014.
Miller, A. J., Ramelli, F., Fuchs, C., Omanovic, N., Spirig, R., Zhang, H., Lohmann, U., Kanji, Z. A., and Henneberger, J.: Two new multirotor uncrewed aerial vehicles (UAVs) for glaciogenic cloud seeding and aerosol measurements within the CLOUDLAB project, Atmos. Meas. Tech., 17, 601–625, https://doi.org/10.5194/amt-17-601-2024, 2024.
Niedermeier, D., Wex, H., Voigtländer, J., Stratmann, F., Brüggemann, E., Kiselev, A., Henk, H., and Heintzenberg, J.: LACIS-measurements and parameterization of sea-salt particle hygroscopic growth and activation, Atmos. Chem. Phys., 8, 579–590, https://doi.org/10.5194/acp-8-579-2008, 2008.
NIMS: Research on Weather Modification and Cloud Physics, National Institute of Meteorological Sciences (NIMS), Seogwipo, South Korea, 1–87, 2022.
NIMS: Research on Weather Modification and Cloud Physics, National Institute of Meteorological Sciences (NIMS), Seogwipo, South Korea, 1–82, 2023.
Park, C., Son, S. W., Kim, J., Chang, E. C., Kim, J. H., Jo, E., Cha, D. H., and Jeong, S.: Diverse synoptic weather patterns of warm-season heavy rainfall events in South Korea, Mon. Weather Rev., 149, 3875–3893, https://doi.org/10.1175/MWR-D-20-0388.1, 2021.
Peng, C., Chen, L., and Tang, M.: A database for deliquescence and efflorescence relative humidities of compounds with atmospheric relevance, Fundam. Res., 2, 578–587, https://doi.org/10.1016/j.fmre.2021.11.021, 2022.
Roche, J. W., Goulden, M. L., and Bales, R. C.: Estimating evapotranspiration change due to forest treatment and fire at the basin scale in the Sierra Nevada, California, Ecohydrology, 11, e1978, https://doi.org/10.1002/eco.1978, 2018.
Rose, D., Gunthe, S. S., Mikhailov, E., Frank, G. P., Dusek, U., Andreae, M. O., and Pöschl, U.: Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment, Atmos. Chem. Phys., 8, 1153–1179, https://doi.org/10.5194/acp-8-1153-2008, 2008.
Rose, D., Nowak, A., Achtert, P., Wiedensohler, A., Hu, M., Shao, M., Zhang, Y., Andreae, M. O., and Pöschl, U.: Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China – Part 1: Size-resolved measurements and implications for the modeling of aerosol particle hygroscopicity and CCN activity, Atmos. Chem. Phys., 10, 3365–3383, https://doi.org/10.5194/acp-10-3365-2010, 2010.
Rosenfeld, D., Yu, X., and Dai, J.: Satellite-retrieved microstructure of AgI seeding tracks in supercooled layer clouds, J. Appl. Meteorol. Climatol., 44, 760–767, https://doi.org/10.1175/JAM2225.1, 2005.
Schneider, J., Groh, J., Pütz, T., Helmig, R., Rothfuss, Y., Vereecken, H., and Vanderborght, J.: Prediction of soil evaporation measured with weighable lysimeters using the FAO Penman–Monteith method in combination with Richards' equation, Vadose Zone J., 20, e20102, https://doi.org/10.1002/vzj2.20102, 2021.
Segal, Y., Khain, A., Pinsky, M., and Rosenfeld, D.: Effects of hygroscopic seeding on raindrop formation as seen from simulations using a 2000-bin spectral cloud parcel model, Atmos. Res., 71, 3–34, https://doi.org/10.1016/j.atmosres.2004.03.003, 2004.
Sezen, C.: Pan evaporation forecasting using empirical and ensemble empirical mode decomposition (EEMD) based data-driven models in the Euphrates sub-basin, Turkey, Earth Sci. Inform., 16, 3077–3095, https://doi.org/10.1007/s12145-023-01078-5, 2023.
Shao, Y., Wang, Y., Du, M., Voliotis, A., Alfarra, M. R., O'Meara, S. P., Turner, S. F., and McFiggans, G.: Characterisation of the Manchester Aerosol Chamber facility, Atmos. Meas. Tech., 15, 539–559, https://doi.org/10.5194/amt-15-539-2022, 2022.
Shaw, R. A., Cantrell, W., Chen, S., Chuang, P., Donahue, N., Feingold, G., Kollias, P., Korolev, A., Kreidenweis, S., Krueger, S., Mellado, J. P., Niedermeier, D., and Xue, L.: Cloud–aerosol–turbulence interactions: Science priorities and concepts for a large-scale laboratory facility, B. Am. Meteorol. Soc., 101, E1026–E1035, https://doi.org/10.1175/BAMS-D-20-0009.1, 2020.
Silverman, B. A.: A critical assessment of glaciogenic seeding of convective clouds for rainfall enhancement, B. Am. Meteorol. Soc., 82, 903–924, https://doi.org/10.1175/1520-0477(2001)082<0903:ACAOGS>2.3.CO;2, 2001.
Silverman, B. A.: A critical assessment of hygroscopic seeding of convective clouds for rainfall enhancement, B. Am. Meteorol. Soc., 84, 1219–1230, https://doi.org/10.1175/BAMS-84-9-1219, 2003.
Tajiri, T., Yamashita, K., Murakami, M., Saito, A., Kusunoki, K., Orikasa, N., and Lilie, L.: A novel adiabatic-expansion-type cloud simulation chamber, J. Meteorol. Soc. Jpn. II, 91, 687–704, https://doi.org/10.2151/jmsj.2013-509, 2013.
Tang, I. N. and Munkelwitz, H. R.: Composition and temperature dependence of the deliquescence properties of hygroscopic aerosols, Atmos. Environ. A-Gen., 27, 467–473, https://doi.org/10.1016/0960-1686(93)90204-C, 1993.
Tessendorf, S. A., French, J. R., Friedrich, K., Geerts, B., Rauber, R. M., Rasmussen, R. M., Xue, L., Ikeda, K., Blestrud, d. R., Kunkel, M. L., Parkinson, S., Snider, J. R., Aikins, J., Faber, S., Majewski, A., Grasmick, C., Bergmaier, P. T., Janiszeski, A., Springer, A., Weeks, C., Serke, D. J., and Bruintjes, R.: A transformational approach to winter orographic weather modification research: The SNOWIE project, B. Am. Meteorol. Soc., 100, 71–92, https://doi.org/10.1175/BAMS-D-17-0152.1, 2019.
Vallon, M., Gao, L., Jiang, F., Krumm, B., Nadolny, J., Song, J., Leisner, T., and Saathoff, H.: LED-based solar simulator to study photochemistry over a wide temperature range in the large simulation chamber AIDA, Atmos. Meas. Tech., 15, 1795–1810, https://doi.org/10.5194/amt-15-1795-2022, 2022.
Wagner, R., Benz, S., Möhler, O., Saathoff, H., and Schurath, U.: Probing ice clouds by broadband mid-infrared extinction spectroscopy: case studies from ice nucleation experiments in the AIDA aerosol and cloud chamber, Atmos. Chem. Phys., 6, 4775–4800, https://doi.org/10.5194/acp-6-4775-2006, 2006.
Wagner, R., Bertozzi, B., Höpfner, M., Höhler, K., Möhler, O., Saathoff, H., and Leisner, T.: Solid ammonium nitrate aerosols as efficient ice nucleating particles at cirrus temperatures, J. Geophys. Res.-Atmos., 125, e2019JD032248, https://doi.org/10.1029/2019JD032248, 2020.
Wang, A., Ovchinnikov, M., Yang, F., Schmalfuss, S., and Shaw, R. A.: Designing a convection-cloud chamber for collision-coalescence using large-eddy simulation with bin microphysics, J. Adv. Model. Earth Syst., 16, e2023MS003734, https://doi.org/10.1029/2023MS003734, 2024.
Weiner, R. F. and Matthews, R. A.: Environmental Engineering, Butterworth-Heinemann, Boston, MA, USA, ISBN 0750672943, 2003.
Wondie, M.: Modeling cloud seeding technology for rain enhancement over the arid and semiarid areas of Ethiopia, Heliyon, 9, e14974, https://doi.org/10.1016/j.heliyon.2023.e14974, 2023.
Xueling, Z., Feifei, W., Qi, Z., Xudong, L., Yanling, W., Yeqiang, Z., Chuanxiao, C., and Tingxiang, J.: Heat storage performance analysis of ZMS-Porous media/CaCl2/MgSO4 composite thermochemical heat storage materials, Sol. Energy Mater. Sol. Cells, 230, 111246, https://doi.org/10.1016/j.solmat.2021.111246, 2021.
Zinke, J., Nilsson, E. D., Zieger, P., and Salter, M. E.: The effect of seawater salinity and seawater temperature on sea salt aerosol production, J. Geophys. Res.-Atmos., 127, e2021JD036005, https://doi.org/10.1029/2021JD036005, 2022.
Zhu, Z., Yang, F., Kollias, P., Shaw, R. A., Kostinski, A. B., Krueger, S., Lamer, K., Allwayin, N., and Oue, M.: Detection of small drizzle droplets in a large cloud chamber using ultrahigh-resolution radar, Atmos. Meas. Tech., 17, 1133–1143, https://doi.org/10.5194/amt-17-1133-2024, 2024.
Short summary
This study analyzed NaCl and CaCl2 powder-type hygroscopic materials for cloud seeding, using the Korea Cloud Physics Experimental Chamber (K-CPEC) in South Korea. The aerosol chamber enabled particle analysis in an extremely dry environment, while the cloud chamber, with precise pressure and temperature control, facilitated droplet growth through quasi-adiabatic expansion. Our study provides valuable insights for the development of new seeding materials and advanced cloud seeding experiments.
This study analyzed NaCl and CaCl2 powder-type hygroscopic materials for cloud seeding, using...