Articles | Volume 18, issue 16
https://doi.org/10.5194/amt-18-4045-2025
https://doi.org/10.5194/amt-18-4045-2025
Research article
 | 
28 Aug 2025
Research article |  | 28 Aug 2025

Numerical quantitation on the effect of coating materials on the mixing state retrieval accuracy of fractal black carbon based on single particle soot photometer

Jia Liu, Donghui Zhou, Guangya Wang, Cancan Zhu, and Xuehai Zhang

Related authors

Retrieval of refractive index and water content for the coating materials of aged black carbon aerosol based on optical properties: a theoretical analysis
Jia Liu, Cancan Zhu, Donghui Zhou, and Jinbao Han
Atmos. Chem. Phys., 24, 12341–12354, https://doi.org/10.5194/acp-24-12341-2024,https://doi.org/10.5194/acp-24-12341-2024, 2024
Short summary
Numerical investigation on retrieval errors of mixing states of fractal black carbon aerosols using single-particle soot photometer based on Mie scattering and the effects on radiative forcing estimation
Jia Liu, Guangya Wang, Cancan Zhu, Donghui Zhou, and Lin Wang
Atmos. Meas. Tech., 16, 4961–4974, https://doi.org/10.5194/amt-16-4961-2023,https://doi.org/10.5194/amt-16-4961-2023, 2023
Short summary

Cited articles

Bhandari, J., China, S., Girotto, G., Scarnato, B. V., Gorkowski, K., Aiken, A. C., Dubey, M. K., and Mazzoleni, C.: Optical properties and radiative forcing of fractal-like tar ball aggregates from biomass burning, J. Quant. Spectrosc. Ra., 230, 65–74, https://doi.org/10.1016/j.jqsrt.2019.01.032, 2019. 
Bond, T. C. and Bergstrom, R. W.: Light absorption by carbonaceous particles: An investigative review, Aerosol Sci. Tech., 40, 27–67, https://doi.org/10.1080/02786820500421521, 2006. 
Ceolato, R., Paulien, L., Maughan, J. B., Sorensen, C. M., and Berg, M. J.: Radiative properties of soot fractal superaggregates including backscattering and depolarization, J. Quant. Spectrosc. Ra., 247, https://doi.org/10.1016/j.jqsrt.2020.106940, 2020. 
China, S., Mazzoleni, C., Gorkowski, K., Aiken, A. C., and Dubey, M. K.: Morphology and mixing state of individual freshly emitted wildfire carbonaceous particles, Nat. Commun., 4, https://doi.org/10.1038/ncomms3122, 2013. 
Download
Short summary
Single-particle soot photometer (SP2) measures the mixing state (Dp/Dc) of coated black carbon (BC) using core-shell Mie theory and coating refractive index is set to 1.50+0i. The retrieved Dp/Dc contains error due to the non-sphericity of BC and coatings with various refractive indices. We reveal the remarkable effects of coatings on the Dp/Dc retrieval accuracy of SP2 based on optical simulation of fractal BC aerosols, and further evaluate the simple radiative forcing efficiency of coated BC.
Share