Articles | Volume 18, issue 17
https://doi.org/10.5194/amt-18-4207-2025
Copyright waived. This work has been dedicated to the public domain (Creative Commons Public Domain Dedication).
https://doi.org/10.5194/amt-18-4207-2025
Copyright waived. This work has been dedicated to the public domain (Creative Commons Public Domain Dedication).
Evaluating mass flow meter measurements from chambers for greenhouse gas emissions from orphan wells and other point sources
U.S. Geological Survey Geology, Energy & Minerals Science Center, 12201 Sunrise Valley Drive, MS 432, Reston, VA 20192, USA
Nicholas J. Gianoutsos
U.S. Geological Survey Energy Resources Program, Central Energy Resources Science Center, Box 25046, MS 939, Denver, CO 80255, USA
Cited articles
Alberta Energy Regulator: Directive 087: Well Integrity Management, Alberta Energy Regulator, Alberta, Directive 087, 27, https://static.aer.ca/prd/documents/directives/directive-087.pdf (last access: 4 January 2023), 2022.
Alboiu, V. and Walker, T. R.: Pollution, management, and mitigation of idle and orphaned oil and gas wells in Alberta, Canada, Environ. Monit. Assess., 191, 611, https://doi.org/10.1007/s10661-019-7780-x, 2019.
Alicat Scientific: Alicat Gas Select™ 5.0 Preloaded Gases and Properties: https://documents.alicat.com/specifications/Alicat_Preloaded-Gases-and-Properties_Rev0.pdf (last access: 1 November 2024), 2014.
Alicat Scientific: M Series Mass Flow Meters, https://www.alicat.com/models/m-gas-mass-flow-meters/ (last access: 4 September 2024), 2024a.
Alicat Scientific: MWB Series Mass Flow Meters, https://www.alicat.com/models/mwb-low-pressure-drop-portable-gas-mass-flow-meters/ (last access: 4 September 2024), 2024b.
Allaire, S. E., Lafond, J. A., Cabral, A. R., and Lange, S. F.: Measurement of gas diffusion through soils: comparison of laboratory methods, J. Environ. Monit., 10, 1326–1336, https://doi.org/10.1039/B809461F, 2008.
American Carbon Registry: Methodology for the quantification, monitoring, reporting and verification of greenhouse gas emissions reductions and removals from plugging orphan oil and gas wells in the u.s. and canada, Winrock International, 65 pp., https://acrcarbon.org/wp-content/uploads/2023/03/ACR-OOG-1.0.pdf (last access: 5 May 2023), 2023.
ASTM International: ASTM D6539-13 Standard Test Method for Measurement of the Permeability of Unsaturated Porous Materials by Flowing Air, ASTM International, West Conshohocken, PA, ASTM Standard D6539-13, 2013.
Atherton, E., Risk, D., Fougère, C., Lavoie, M., Marshall, A., Werring, J., Williams, J. P., and Minions, C.: Mobile measurement of methane emissions from natural gas developments in northeastern British Columbia, Canada, Atmos. Chem. Phys., 17, 12405–12420, https://doi.org/10.5194/acp-17-12405-2017, 2017.
BCarbon: Methane Capture and Reclamation, https://bcarbon.org/methane (last access: 29 March 2024), 2024.
Benavente, D., Valdés-Abellán, J., Pla, C., and Sanz-Rubio, E.: Estimation of soil gas permeability for assessing radon risk using Rosetta pedotransfer function based on soil texture and water content, J. Environ. Radioactiv., 208–209, 105992, https://doi.org/10.1016/j.jenvrad.2019.105992, 2019.
Bloomfield, J. P. and Williams, A. T.: An empirical liquid permeability–gas permeability correlation for use in aquifer properties studies, Q. J. Eng. Geol. Hydroge., 28, S143–S150, https://doi.org/10.1144/gsl.Qjegh.1995.028.S2.05, 1995.
Bowman, L. V., El Hachem, K., and Kang, M.: Methane Emissions from Abandoned Oil and Gas Wells in Alberta and Saskatchewan, Canada: The Role of Surface Casing Vent Flows, Environ. Sci. Technol., 57, 19594–19601, https://doi.org/10.1021/acs.est.3c06946, 2023.
Brasseur, G. P., Orlando, J. J., and Tyndall, G. S.: Atmospheric Humidity, in: Atmospheric Chemistry and Global Change, Oxford University Press, New York, 578–579, ISBN 9780195105216, 1999.
Calscan: Hawk Low Flow Vent Gas Meter, http://www.calscan.net/pdf/Hawk Low Flow Vent Gas Meter.pdf (last access: 4 September 2024), 2024.
CarbonPath: CarbonPath Methodology, https://www.carbonpath.io/methodology (last access: 29 March 2024), 2024.
Chestovich, P. J., Saroukhanoff, R. Z., Moujaes, S. F., Flores, C. E., Carroll, J. T., and Saquib, S. F.: Temperature Profiles of Sunlight-Exposed Surfaces in a Desert Climate: Determining the Risk for Pavement Burns, J. Burn Care Res., 44, 438–445, https://doi.org/10.1093/jbcr/irac136, 2022.
Davidson, T. A.: A simple and accurate method for calculating viscosity of gaseous mixtures, Pittsburgh, PA (United States), Bureau of Mines, United States, 12, OSTID 6129940, 1993.
Department of the Interior Orphaned Wells Program Office: Orphaned Wells Program Annual Report to Congress – Bipartisan Infrastructure Law Section 40601, Congressional Report, https://www.govinfo.gov/app/details/CMR-I1-00189149 (last access: 4 September 2024), 2023.
DiGiulio, D. C., Rossi, R. J., Lebel, E. D., Bilsback, K. R., Michanowicz, D. R., and Shonkoff, S. B. C.: Chemical Characterization of Natural Gas Leaking from Abandoned Oil and Gas Wells in Western Pennsylvania, ACS Omega, 8, 19443–19454, https://doi.org/10.1021/acsomega.3c00676, 2023.
El Hachem, K. and Kang, M.: Methane and hydrogen sulfide emissions from abandoned, active, and marginally producing oil and gas wells in Ontario, Canada, Sci. Total Environ., 823, 153491, https://doi.org/10.1016/j.scitotenv.2022.153491, 2022.
Fleming, N. A., Morais, T. A., Mayer, K. U., and Ryan, M. C.: Spatiotemporal variability of fugitive gas migration emissions around a petroleum well, Atmos. Pollut. Res., 12, 101094, https://doi.org/10.1016/j.apr.2021.101094, 2021.
Follansbee, E., Lee, J. E., Dubey, M. L., Dooley, J., Schuck, C., Minschwaner, K., Santos, A., Biraud, S. C., and Dubey, M. K.: Quantifying Methane Fluxes from Super-Emitting Orphan Wells to Report Carbon Credits and Prioritize Remediation, ESS Open Archive, https://doi.org/10.22541/essoar.171781163.39594276/v1, 2024.
Forde, O. N., Cahill, A. G., Beckie, R. D., and Mayer, K. U.: Barometric-pumping controls fugitive gas emissions from a vadose zone natural gas release, Sci. Rep., 9, 14080, https://doi.org/10.1038/s41598-019-50426-3, 2019.
Friend, D. G., Ely, J. F., and Ingham, H.: Thermophysical Properties of Methane, J. Phys. Chem. Ref. Data, 18, 583–638, https://doi.org/10.1063/1.555828, 1989.
Gao, F. and Yates, S. R.: Simulation of enclosure-based methods for measuring gas emissions from soil to the atmosphere, J. Geophys. Res.-Atmos., 103, 26127–26136, https://doi.org/10.1029/98JD01345, 1998.
Garg, A., Huang, H., Cai, W., Reddy, N. G., Chen, P., Han, Y., Kamchoom, V., Gaurav, S., and Zhu, H.-H.: Influence of soil density on gas permeability and water retention in soils amended with in-house produced biochar, Journal of Rock Mechanics and Geotechnical Engineering, 13, 593–602, https://doi.org/10.1016/j.jrmge.2020.10.007, 2021.
Haase, K. B. and Gianoutsos, N. J.: Data from Controlled Laboratory and Field Experiments of Flow Meters with Rigid Chambers to Measure Gas Fluxes From December 2023 to February 2024, USGS ScienceBase [data set] https://doi.org/10.5066/P13MUL7S, 2025.
Haase, K. B., Gianoutsos, N. J., Birdwell, J. E., Wycech, J. B., Dreier, M. F., and Lowry, Z. K.: Data from Methane Emission Measurements and Isotope Geochemistry Samples from Orphan Oil and Gas Wells on the Kevin-Sunburst Dome in Montana, U.S.A., from April 2021 to October 2023, USGS ScienceBase, https://doi.org/10.5066/P13A7RXN, 2025.
Hardy, J. E., Hylton, J. O., and McKnight, T. E.: Empirical Correlations for Thermal Flowmeters Covering a Wide Range of Thermal-Physical Properties, Conference: National Conference of Standards labs (NCSL) 1999 Workshop and Symposium, Charlotte, NC, 19–22 July 1999, United States, OSTID 7633, 1999.
Huber, M. and Harvey, A.: Chapter 6: Viscosity of Gases, in: CRC Handbook of Chemistry and Physics, CRC-Press, Boca Raton, FL, 2656, ISBN 978-1-4398-5511-9, 2011.
Joo, J., Jeong, S., Shin, J., and Chang, D. Y.: Missing methane emissions from urban sewer networks, Environ. Pollut., 342, 123101, https://doi.org/10.1016/j.envpol.2023.123101, 2024.
Kang, M., Kanno, C. M., Reid, M. C., Zhang, X., Mauzerall, D. L., Celia, M. A., Chen, Y., and Onstott, T. C.: Direct measurements of methane emissions from abandoned oil and gas wells in Pennsylvania, P. Natl. Acad. Sci. USA, 111, 18173–18177, https://doi.org/10.1073/pnas.1408315111, 2014.
Kang, M., Christian, S., Celia, M. A., Mauzerall, D. L., Bill, M., Miller, A. R., Chen, Y., Conrad, M. E., Darrah, T. H., and Jackson, R. B.: Identification and characterization of high methane-emitting abandoned oil and gas wells, P. Natl. Acad. Sci. USA, 113, 13636–13641, https://doi.org/10.1073/pnas.1605913113, 2016.
Kang, M., Boutot, J., McVay, R. C., Roberts, K. A., Jasechko, S., Perrone, D., Wen, T., Lackey, G., Raimi, D., Digiulio, D. C., Shonkoff, S. B. C., William Carey, J., Elliott, E. G., Vorhees, D. J., and Peltz, A. S.: Environmental risks and opportunities of orphaned oil and gas wells in the United States, Environ. Res. Lett., 18, 074012, https://doi.org/10.1088/1748-9326/acdae7, 2023.
Laesecke, A. and Muzny, C. D.: Reference Correlation for the Viscosity of Carbon Dioxide, J. Phys. Chem. Ref. Data, 46, https://doi.org/10.1063/1.4977429, 2017.
Lebel, E. D., Lu, H. S., Vielstädte, L., Kang, M., Banner, P., Fischer, M. L., and Jackson, R. B.: Methane Emissions from Abandoned Oil and Gas Wells in California, Environ. Sci. Technol., 54, 14617–14626, https://doi.org/10.1021/acs.est.0c05279, 2020.
Li, H., Liu, W., Zhan, H., Sun, S., Wang, X., Wang, S., Li, F., and Wang, X.: Effect of barometric pumping on relative humidity in the loessal soil of the loess Plateau, Geoderma, 424, 116008, https://doi.org/10.1016/j.geoderma.2022.116008, 2022.
Liu, L., Abdala Prata Junior, A., Fisher, R. M., and Stuetz, R. M.: Measuring volatile emissions from biosolids: A critical review on sampling methods, J. Environ. Manage., 317, 115290, https://doi.org/10.1016/j.jenvman.2022.115290, 2022.
Maciel, F. J. and Jucá, J. F. T.: Laboratory and Field Tests for Studying Gas Flow Through MSW Landfill Cover, in: Advances in Unsaturated Geotechnics, 569–585, https://doi.org/10.1061/40510(287)38, 2000.
Maier, M., Mayer, S., and Laemmel, T.: Rain and wind affect chamber measurements, Agr. Forest Meteorol., 279, 107754, https://doi.org/10.1016/j.agrformet.2019.107754, 2019.
Maier, M., Weber, T. K. D., Fiedler, J., Fuß, R., Glatzel, S., Huth, V., Jordan, S., Jurasinski, G., Kutzbach, L., Schäfer, K., Weymann, D., and Hagemann, U.: Introduction of a guideline for measurements of greenhouse gas fluxes from soils using non-steady-state chambers, J. Plant Nutr. Soil Sc., 185, 447–461, https://doi.org/10.1002/jpln.202200199, 2022.
MKS Instruments: Gas Correction Factors for Thermal-based Mass Flow, https://www.mks.com/n/gas-correction-factors-for-thermal-based-mass-flow-controllers (last access: 2 January 2024), 2024.
Mønster, J., Kjeldsen, P., and Scheutz, C.: Methodologies for measuring fugitive methane emissions from landfills – A review, Waste Manage., 87, 835–859, https://doi.org/10.1016/j.wasman.2018.12.047, 2019.
Nivitanont, J., Robertson, E. P., Murphy, S. M., Burkhart, M. D., and Caulton, D. R.: Characterizing methane emissions from orphaned coalbed methane wells in the powder river basin, Environ. Res. Commun., 5, 055004, https://doi.org/10.1088/2515-7620/acd0f6, 2023.
Northern Virginia Soil and Water Conservation District: Description & interpretive guide to soils in fairfax county, Fairfax County Department of Public Works and Environmental Services, Fairfax, Virginia, USA, https://www.fairfaxcounty.gov/landdevelopment/sites/landdevelopment/files/assets/documents/pdf/publications/soils_map_guide.pdf (last access: 3 January 2024), 2013.
Parkin, T. B., Kaspar, T. C., Senwo, Z., Prueger, J. H., and Hatfield, J. L.: Relationship of Soil Respiration to Crop and Landscape in the Walnut Creek Watershed, J. Hydrometeorol., 6, 812–824, https://doi.org/10.1175/JHM459.1, 2005.
Pekney, N., Rosenbaum, E., Lackey, G., Drouven, M., Mackey, J., McElroy, P., Arthur, D., Gorantla, V. R., and Reeder, M.: Methane measurement guidelines for marginal conventional wells, U.S. Department of Energy, Pittsburgh, PA, https://netl.doe.gov/sites/default/files/2024-06/DOE-NETL Methane Measurement Guidelines for Marginal (last access: 9 February 2025), 2024.
Pekney, N. J., Diehl, J. R., Ruehl, D., Sams, J., Veloski, G., Patel, A., Schmidt, C., and Card, T.: Measurement of methane emissions from abandoned oil and gas wells in Hillman State Park, Pennsylvania, Carbon Manage., 9, 165–175, https://doi.org/10.1080/17583004.2018.1443642, 2018.
Riddick, S. N., Mauzerall, D. L., Celia, M. A., Kang, M., Bressler, K., Chu, C., and Gum, C. D.: Measuring methane emissions from abandoned and active oil and gas wells in West Virginia, Sci. Total Environ., 651, 1849–1856, https://doi.org/10.1016/j.scitotenv.2018.10.082, 2019.
Riddick, S. N., Mauzerall, D. L., Celia, M. A., Kang, M., and Bandilla, K.: Variability observed over time in methane emissions from abandoned oil and gas wells, Int. J. Greenh. Gas Con., 100, 103116, https://doi.org/10.1016/j.ijggc.2020.103116, 2020.
Riddick, S. N., Ancona, R., Mbua, M., Bell, C. S., Duggan, A., Vaughn, T. L., Bennett, K., and Zimmerle, D. J.: A quantitative comparison of methods used to measure smaller methane emissions typically observed from superannuated oil and gas infrastructure, Atmos. Meas. Tech., 15, 6285–6296, https://doi.org/10.5194/amt-15-6285-2022, 2022.
Riddick, S. N., Mbua, M., Riddick, J. C., Houlihan, C., Hodshire, A. L., and Zimmerle, D. J.: Uncertainty Quantification of Methods Used to Measure Methane Emissions of 1 g CH4 h−1, Sensors, 23, 9246, https://doi.org/10.3390/s23229246, 2023.
Riddick, S. N., Mbua, M., Santos, A., Emerson, E. W., Cheptonui, F., Houlihan, C., Hodshire, A. L., Anand, A., Hartzell, W., and Zimmerle, D. J.: Methane emissions from abandoned oil and gas wells in Colorado, Sci. Total Environ., 922, 170990, https://doi.org/10.1016/j.scitotenv.2024.170990, 2024.
Russell, D. G. and Bartels, R. A.: The temperature of various surfaces exposed to solar radiation: An experiment, Phys. Teach., 27, 179–181, https://doi.org/10.1119/1.2342710, 1989.
Saint-Vincent, P. M. B., Reeder, M. D., Sams III, J. I., and Pekney, N. J.: An Analysis of Abandoned Oil Well Characteristics Affecting Methane Emissions Estimates in the Cherokee Platform in Eastern Oklahoma, Geophys. Res. Lett., 47, e2020GL089663, https://doi.org/10.1029/2020GL089663, 2020a.
Saint-Vincent, P. M. B., Sams, J. I., III, Hammack, R. W., Veloski, G. A., and Pekney, N. J.: Identifying Abandoned Well Sites Using Database Records and Aeromagnetic Surveys, Environ. Sci. Technol., 54, 8300–8309, https://doi.org/10.1021/acs.est.0c00044, 2020b.
Seabold, S. A. J. P.: Statsmodels: Econometric and Statistical Modeling with Python, Proceedings of the 9th Python in Science Conference, https://doi.org/10.25080/Majora-92bf1922-011, 2010.
Thalasso, F., Riquelme, B., Gómez, A., Mackenzie, R., Aguirre, F. J., Hoyos-Santillan, J., Rozzi, R., and Sepulveda-Jauregui, A.: Technical note: Skirt chamber – an open dynamic method for the rapid and minimally intrusive measurement of greenhouse gas emissions from peatlands, Biogeosciences, 20, 3737–3749, https://doi.org/10.5194/bg-20-3737-2023, 2023.
Ventbuster Instruments: The Ventbuster, https://www.ventbusters.com/the-ventbuster (last access: 4 September 2024), 2024.
VentMEDIC Corporation: The Ventmedic, https://ventmedic.com/ (last access: 4 September 2024), 2024.
Tison, S. A.: A critical evaluation of thermal mass flow meters, J. Vac. Sci. Technol. A, 14, 2582–2591, https://doi.org/10.1116/1.579985, 1996.
Townsend-Small, A. and Hoschouer, J.: Direct measurements from shut-in and other abandoned wells in the Permian Basin of Texas indicate some wells are a major source of methane emissions and produced water, Environ. Res. Lett., 16, 054081, https://doi.org/10.1088/1748-9326/abf06f, 2021.
Townsend-Small, A., Ferrara, T. W., Lyon, D. R., Fries, A. E., and Lamb, B. K.: Emissions of coalbed and natural gas methane from abandoned oil and gas wells in the United States, Geophys. Res. Lett., 43, 2283–2290, https://doi.org/10.1002/2015GL067623, 2016.
U.S. Environmental Protection Agency: Methane Emissions from Abandoned Coal Mines in the United States: Emission Inventory Methodology and 1990-2002 Emissions EstimatesEPA 430-R-21-021, 90, https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P101488K.txt (last access: 4 September 2024), 2004.
Vogt, J., Laforest, J., Argento, M., Kennedy, S., Bourlon, E., Lavoie, M., and Risk, D.: Active and inactive oil and gas sites contribute to methane emissions in western Saskatchewan, Canada, Elementa: Science of the Anthropocene, 10, 00014, https://doi.org/10.1525/elementa.2022.00014, 2022.
Wałowski, G.: Assessment of gas permeability coefficient of porous materials, Journal of Sustainable Mining, 16, 55–65, https://doi.org/10.1016/j.jsm.2017.08.001, 2017.
Williams, J. P., Risk, D., Marshall, A., Nickerson, N., Martell, A., Creelman, C., Grace, M., and Wach, G.: Methane emissions from abandoned coal and oil and gas developments in New Brunswick and Nova Scotia, Environ. Monit.Assess., 191, 479, https://doi.org/10.1007/s10661-019-7602-1, 2019.
Williams, J. P., Regehr, A., and Kang, M.: Methane Emissions from Abandoned Oil and Gas Wells in Canada and the United States, Environ. Sci. Technol., 55, 563–570, https://doi.org/10.1021/acs.est.0c04265, 2021.
Williams, J. P., El Hachem, K., and Kang, M.: Controlled-release testing of the static chamber methodology for direct measurements of methane emissions, Atmos. Meas. Tech., 16, 3421–3435, https://doi.org/10.5194/amt-16-3421-2023, 2023.
Xu, L., Furtaw, M. D., Madsen, R. A., Garcia, R. L., Anderson, D. J., and McDermitt, D. K.: On maintaining pressure equilibrium between a soil CO2 flux chamber and the ambient air, J. Geophys. Res.-Atmos., 111, https://doi.org/10.1029/2005JD006435, 2006.
Yang, D., Wang, W., Chen, W., Tan, X., and Wang, L.: Revisiting the methods for gas permeability measurement in tight porous medium, Journal of Rock Mechanics and Geotechnical Engineering, 11, 263–276, https://doi.org/10.1016/j.jrmge.2018.08.012, 2019.
Yang, X., Lu, C., Huang, X., and Luo, J.: A rainfall event may produce a biased estimation of the indoor vapor intrusion risk through exterior soil-gas sampling, J. Hydrol., 603, 127117, https://doi.org/10.1016/j.jhydrol.2021.127117, 2021.
Zer0six: Offset-Emissions, https://www.zerosix.co/offset-emissions/ (last access: 4 December 2024), 2024.
Zhan, L.-T., Qiu, Q.-W., Xu, W.-J., and Chen, Y.-M.: Field measurement of gas permeability of compacted loess used as an earthen final cover for a municipal solid waste landfill, J. Zhejiang Univ.-Sc. A, 17, 541–552, https://doi.org/10.1631/jzus.A1600245, 2016.
Short summary
This work demonstrates a simple approach for using mass flow meters connected to rigid chambers for measuring gas emissions rates in situations the meter cannot be attached directly, such as orphan oil and gas wells. This paper shows the results of performance testing, demonstrates common sources of uncertainty, and provides suggestions for how to use the approach to generate the best quality data. The findings can be used by researchers, the petroleum industry, regulators, and carbon markets.
This work demonstrates a simple approach for using mass flow meters connected to rigid chambers...