Adair-Rohani, H.: Air pollution responsible for 6.7 million deaths every year, World Health Organization (WHO), Global section, for Air quality, energy and health,
https://www.who.int/teams/environment-climate-change-and-health/air-quality-and-health/health-impacts/types-of-pollutants (last access: 27 November 2024), 2024. a
Cavaliere, A., Brilli, L., Andreini, B. P., Carotenuto, F., Gioli, B., Giordano, T., Stefanelli, M., Vagnoli, C., Zaldei, A., and Gualtieri, G.: Development of low-cost air quality stations for next-generation monitoring networks: calibration and validation of
NO2 and
O3 sensors, Atmos. Meas. Tech., 16, 4723–4740,
https://doi.org/10.5194/amt-16-4723-2023, 2023.
a,
b,
c,
d
Corp, Z. W. E. T.: Ozone detection module ZE27-03, Winsen Electronics,
https://www.winsen-sensor.com/d/files/manual/ze27-o3.pdf (last access: 27 November 2024), 2024. a
Coto-Fuentes, H., Valdés-Perezgasga, F., Guevara-Amatón, K., Limones-Ríos, K., and Calderón-Ibarra, C.: Integración de estaciones KNARIO con un sistema de información geográfico para el monitoreo de la calidad del aire en la zona metropolitana de La Laguna, Revista Ciencia, Ingeniería y Desarrollo, 1, 109–114, 2022. a
DecentLab, Ltd.: Air quality sensor DL-LP8P, DecentLab, Ltd.,
https://www.catsensors.com/media/Decentlab/Productos/Decentlab-DL-LP8P-datasheet.pdf (last access: 27 November 2024), 2024.
a,
b
Directive 2008/50/EC: Directive 2008/50/EC of the European Parliament and of the Councils of 21 May 2009 on ambient air quality and cleaner air for Europe, Official Journal of the European Communities, L 152, 1–44, 2008.
a,
b,
c,
d
Esposito, E., De Vito, S., Salvato, M., Bright, V., Jones, R., and Popoola, O.: Dynamic neural network architectures for on field stochastic calibration of indicative low cost air quality sensing systems, Sensor. Actuat. B-Chem., 231, 701–713,
https://doi.org/10.1016/j.snb.2016.03.038 2016.
a,
b,
c,
d,
e
Felici-Castell, S., Segura-Garcia, J., Perez-Solano, J. J., Fayos-Jordan, R., Soriano-Asensi, A., and Alcaraz-Calero, J. M.: AI-IoT Low-Cost Pollution-Monitoring Sensor Network to Assist Citizens with Respiratory Problems, Sensors, 23, 9585,
https://doi.org/10.3390/s23239585 2023.
a
Garcia, M. A., Villanueva, J., Pardo, N., Perez, I. A., and Sanchez, M. L.: Analysis of ozone concentrations between 2002–2020 in urban air in Northern Spain, Atmosphere, 12, 1495,
https://doi.org/10.3390/atmos12111495, 2021.
a
García, M. R., Spinazzé, A., Branco, P. T., Borghi, F., Villena, G., Cattaneo, A., Gilio, A. D., Mihucz, V. G., Álvarez, E. G., Lopes, S. I., Bergmans, B., Orłowski, C., Karatzas, K., Marques, G., Saffell, J., and Sousa, S. I.: Review of low-cost sensors for indoor air quality: Features and applications, Appl. Spectrosc. Rev., 57, 747–779,
https://doi.org/10.1080/05704928.2022.2085734 2022.
a,
b
Generalitat Valenciana: Xarxa Valenciana de Vigilància i Control de la Contaminació Atmosfèrica, Estació de Bulevar Sud, Generalitat Valenciana (GVA),
https://rvvcca.gva.es/estatico/46250050 (last access: 27 March 2025), 2025a. a
Generalitat Valenciana: Xarxa Valenciana de Vigilància i Control de la Contaminació Atmosfèrica, Estació de Moli del Sol, Generalitat Valenciana (GVA),
https://rvvcca.gva.es/estatico/46250048 (last access: 27 March 2025), 2025b. a
Johnson, N. E., Bonczak, B., and Kontokosta, C. E.: Using a gradient boosting model to improve the performance of low-cost aerosol monitors in a dense, heterogeneous urban environment, Atmos. Environ., 184, 9–16,
https://doi.org/10.1016/j.atmosenv.2018.04.019 2018.
a,
b,
c
Karagulian, F., Barbiere, M., Kotsev, A., Spinelle, L., Gerboles, M., Lagler, F., Redon, N., Crunaire, S., and Borowiak, A.: Review of the Performance of Low-Cost Sensors for Air Quality Monitoring, Atmosphere, 10, 506,
https://doi.org/10.3390/atmos10090506 2019.
a
Kennedy, Z., Huber, D., Xie, H. R., Sohl, J. E., Page, J., and Dowell, W.: Miniature Multi-Sensor Array (mini-MSA) for Ground-to-Stratosphere Air Measurement, Phase II, Mechanical Engineering Commons, Dept. of Physics, Weber State University,
https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1600&context=spacegrant(last access: 27 November 2024), 2021. a
Malings, C., Tanzer, R., Hauryliuk, A., Kumar, S. P. N., Zimmerman, N., Kara, L. B., Presto, A. A., and R. Subramanian: Development of a general calibration model and long-term performance evaluation of low-cost sensors for air pollutant gas monitoring, Atmos. Meas. Tech., 12, 903–920,
https://doi.org/10.5194/amt-12-903-2019, 2019.
a,
b
Manisalidis, I., Stavropoulou, E., Stavropoulos, A., and Bezirtzoglou, E.: Environmental and Health Impacts of Air Pollution: A Review, Frontiers in Public Health, 8, 14,
https://doi.org/10.3389/fpubh.2020.00014, 2020.
a
Meneses-Albala, E., Montalban-Faet, G., Felici-Castell, S., Perez-Solano, J. J., and Fayos-Jordan, R.: Assessment of a Multisensor ZPHS01B-Based Low-Cost Air Quality Monitoring System: Case Study, Electronics, 14, 1531,
https://doi.org/10.3390/electronics14081531, 2025.
a
Montalbán Faet, G., Meneses Albalá, E., Felici-Castell, S., Pérez Solano, J. J., and Segura-Garcia, J.: Air Quality Data from Regulatory AQMS and Low-Cost Sensors in Bulevar Sur, Valencia (July 08 - November 18, 2023) (1.0.0), Zenodo [data set],
https://doi.org/10.5281/zenodo.17018565, 2025a.
a,
b
Montalbán Faet, G., Meneses Albalá, E., Felici-Castell, S., Pérez Solano, J. J., and Segura-Garcia, J.: Air Quality Data from Regulatory AQMS and Low-Cost Sensors in Molí del Sol, Valencia (May 31 2024 - January 23, 2025) (1.0.0), Zenodo [data set],
https://doi.org/10.5281/zenodo.17044034, 2025b.
a,
b
Nova Fitness Co., Ltd.: Air quality sensor SDS011, Nova Fitness Co., Ltd.,
https://cdn-reichelt.de/documents/datenblatt/X200/SDS011-DATASHEET.pdf (last access: 27 November), 2024.
a,
b
Obregon, J. and Jung, J.-Y.: Chapter 4 – Explanation of ensemble models, in: Human-Centered Artificial Intelligence, edited by: Nam, C. S., Jung, J.-Y., and Lee, S., Academic Press, 51–72,
https://doi.org/10.1016/B978-0-323-85648-5.00011-6, 2022.
a
Okafor, N. U., Alghorani, Y., and Delaney, D. T.: Improving Data Quality of Low-cost IoT Sensors in Environmental Monitoring Networks Using Data Fusion and Machine Learning Approach, ICT Express, 6, 220–228,
https://doi.org/10.1016/j.icte.2020.06.004 2020.
a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.: Scikit-learn: Machine Learning in Python, J. Mach. Learn. Res., 12, 2825–2830, 2011.
a,
b,
c,
d
Sensit: anatrac.com, Sensit Tech.,
https://www.anatrac.com/wp-content/uploads/2021/04/sensit-ramp-brochure.pdf (last access: 27 November 2024), 2024.
a,
b
SGX, SensorTech: Air quality sensor MiCS-6814, SGX SensorTech.,
https://www.sgxsensortech.com/content/uploads/2015/02/1143_Datasheet-MiCS-6814-rev-8.pdf (last access: 27 November 2024), 2024.
a,
b
Shinyei: PPD42 sensor by Shinyei Tech. Co., Shinyei Tech.,
https://www.shinyei.co.jp/stc/eng/products/optical/ppd42nj.html (last access: 27 November 2024), 2024. a
Vaheed, S., Nayak, P., Rajput, P. S., Snehit, T. U., Kiran, Y. S., and Kumar, L.: Building IoT-Assisted Indoor Air Quality Pollution Monitoring System, in: 2022 7th International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 22–24 June 2022, IEEE, 484–489,
https://doi.org/10.1109/ICCES54183.2022.9835822, 2022.
a
Van Poppel, M., Schneider, P., Peters, J., Yatkin, S., Gerboles, M., Matheeussen, C., Bartonova, A., Davila, S., Signorini, M., Vogt, M., Dauge, F., Skaar, J., and Haugen, R.: SensEURCity: A multi-city air quality dataset collected for 2020/2021 using open low-cost sensor systems, Scientific Data, 10, 322,
https://doi.org/10.1038/s41597-023-02135-w, 2023.
a,
b
Wang, G., Yu, C., Guo, K., Guo, H., and Wang, Y.: Research of low-cost air quality monitoring models with different machine learning algorithms, Atmos. Meas. Tech., 17, 181–196,
https://doi.org/10.5194/amt-17-181-2024, 2024.
a,
b,
c,
d
Wang, R., Li, Q., Yu, H., Chen, Z., Zhang, Y., Zhang, L., Cui, H., and Zhang, K.: A Category-Based Calibration Approach With Fault Tolerance for Air Monitoring Sensors, IEEE Sens. J., 20, 10756–10765,
https://doi.org/10.1109/JSEN.2020.2994645, 2020.
a,
b,
c
WHO Agency: Air Quality Guidelines-Update 2021, WHO Regional Office for Europe, Copenhagen, Denmark, ISBN 978-92-4-003422-8, 2021.
a,
b
Zhengzhou Winsen Electronics Technology Co., L.: Multi-in-One Sensor Module (Model: ZPHS01B) Manual, Winsen Electronics,
https://www.winsen-sensor.com/d/files/zphs01b-english-version1_1-20200713.pdf (last access: 27 November 2024), 2024.
a,
b,
c,
d
Zhu, J.-J., Yang, M., and Ren, Z. J.: Machine Learning in Environmental Research: Common Pitfalls and Best Practices, Environ. Sci. Technol., 57, 17671–17689,
https://doi.org/10.1021/acs.est.3c00026, pMID: 37384597, 2023.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j
Zimmerman, N., Presto, A. A., Kumar, S. P. N., Gu, J., Hauryliuk, A., Robinson, E. S., Robinson, A. L., and R. Subramanian: A machine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring, Atmos. Meas. Tech., 11, 291–313,
https://doi.org/10.5194/amt-11-291-2018, 2018.
a,
b,
c,
d