Articles | Volume 18, issue 2
https://doi.org/10.5194/amt-18-443-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-18-443-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Tropospheric ozone sensing with a differential absorption lidar based on a single CO2 Raman cell
Guangqiang Fan
Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031, China
Yibin Fu
Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031, China
Juntao Huo
Shanghai Environmental Monitoring Center, Shanghai, 200235, China
Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
Tianshu Zhang
CORRESPONDING AUTHOR
Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031, China
Institute of Environment, Hefei Comprehensive National Science Center, Hefei 230088, China
Wenqing Liu
Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031, China
Zhi Ning
Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong SAR, China
Related authors
No articles found.
Xueying Liu, Yeqi Huang, Yao Chen, Xin Feng, Yang Xu, Yi Chen, Dasa Gu, Hao Sun, Zhi Ning, Jianzhen Yu, Wing Sze Chow, Changqing Lin, Yan Xiang, Tianshu Zhang, Claire Granier, Guy Brasseur, Zhe Wang, and Jimmy C. H. Fung
EGUsphere, https://doi.org/10.5194/egusphere-2025-3227, https://doi.org/10.5194/egusphere-2025-3227, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Volatile organic compounds (VOCs) affect ozone formation and air quality. However, our understanding is limited due to insufficient measurements, especially for oxygenated VOCs. This study combines land, ship, and satellite data in Hong Kong, showing that oxygenated VOCs make up a significant portion of total VOCs. Despite their importance, many are underestimated in current models. These findings highlight the need to improve VOC representation in models to enhance air quality management.
Chengli Ji, Qiankai Jin, Feilong Li, Yuyang Liu, Zhicheng Wang, Jiajia Mao, Xiaoyu Ren, Yan Xiang, Wanlin Jian, Zhenyi Chen, and Peitao Zhao
Atmos. Meas. Tech., 18, 3179–3191, https://doi.org/10.5194/amt-18-3179-2025, https://doi.org/10.5194/amt-18-3179-2025, 2025
Short summary
Short summary
This study presents the humidity measurements with a synergistic algorithm combining Raman lidar, microwave radiometer, and satellite. The results from 47 sites in China show the best correlation over 0.9 concerning the radiosonde measurements. This validates the relative humidity (RH) accuracy with various data integrations. Three representative sites present the different seasonal characteristics, indicating the geographic and height influences on the RH vertical distribution.
Han Mei, Peng Wei, Meisam Ahmadi Ghadikolaei, Nirmal Kumar Gali, Ya Wang, and Zhi Ning
Atmos. Meas. Tech., 18, 1771–1785, https://doi.org/10.5194/amt-18-1771-2025, https://doi.org/10.5194/amt-18-1771-2025, 2025
Short summary
Short summary
Long-term field testing across diverse climatic environments is conducted to identify the optimized calibration conditions for NO2, NO, CO and O3 electrochemical sensors. The results uncovered three factors that influence calibration performance: calibration period, concentration range and time averaging. We developed a comprehensive framework for the best sensor calibration practices, which serves as a valuable reference for calibrating various sensor types used in air quality monitoring.
Renzhi Hu, Guoxian Zhang, Haotian Cai, Jingyi Guo, Keding Lu, Xin Li, Shengrong Lou, Zhaofeng Tan, Changjin Hu, Pinhua Xie, and Wenqing Liu
Atmos. Chem. Phys., 25, 3011–3028, https://doi.org/10.5194/acp-25-3011-2025, https://doi.org/10.5194/acp-25-3011-2025, 2025
Short summary
Short summary
A full suite of radical measurements (OH, HO2, RO2, and kOH) was established to accurately elucidate the limitations of oxidation in a chemically complex atmosphere. Sensitivity tests revealed that the incorporation of complex processes enabled a balance in both radical concentrations and coordinate ratios, effectively addressing the deficiency in the ozone generation mechanism. The full-chain radical detection bridged the gap between the photochemistry and the intensive oxidation level.
Naveed Ahmad, Changqing Lin, Alexis K. H. Lau, Jhoon Kim, Tianshu Zhang, Fangqun Yu, Chengcai Li, Ying Li, Jimmy C. H. Fung, and Xiang Qian Lao
Atmos. Chem. Phys., 24, 9645–9665, https://doi.org/10.5194/acp-24-9645-2024, https://doi.org/10.5194/acp-24-9645-2024, 2024
Short summary
Short summary
This study developed a nested machine learning model to convert the GEMS NO2 column measurements into ground-level concentrations across China. The model directly incorporates the NO2 mixing height (NMH) into the methodological framework. The study underscores the importance of considering NMH when estimating ground-level NO2 from satellite column measurements and highlights the significant advantages of new-generation geostationary satellites in air quality monitoring.
Guoxian Zhang, Renzhi Hu, Pinhua Xie, Changjin Hu, Xiaoyan Liu, Liujun Zhong, Haotian Cai, Bo Zhu, Shiyong Xia, Xiaofeng Huang, Xin Li, and Wenqing Liu
Atmos. Chem. Phys., 24, 1825–1839, https://doi.org/10.5194/acp-24-1825-2024, https://doi.org/10.5194/acp-24-1825-2024, 2024
Short summary
Short summary
Comprehensive observation of HOx radicals was conducted at a coastal site in the Pearl River Delta. Radical chemistry was influenced by different air masses in a time-dependent way. Land mass promotes a more active photochemical process, with daily averages of 7.1 × 106 and 5.2 × 108 cm−3 for OH and HO2 respectively. The rapid oxidation process was accompanied by a higher diurnal HONO concentration, which influences the ozone-sensitive system and eventually magnifies the background ozone.
Jiaqi Wang, Jian Gao, Fei Che, Xin Yang, Yuanqin Yang, Lei Liu, Yan Xiang, and Haisheng Li
Atmos. Chem. Phys., 23, 14715–14733, https://doi.org/10.5194/acp-23-14715-2023, https://doi.org/10.5194/acp-23-14715-2023, 2023
Short summary
Short summary
Regional-scale observations of surface O3, PM2.5 and its major chemical species, mixing layer height (MLH), and other meteorological parameters were made in the North China Plain during summer. Unlike the cold season, synchronized increases in MDA8 O3 and PM2.5 under medium MLH conditions have been witnessed. The increasing trend of PM2.5 was associated with enhanced secondary chemical formation. The correlation between MLH and secondary air pollutants should be treated with care in hot seasons.
Qidi Li, Yuhan Luo, Yuanyuan Qian, Chen Pan, Ke Dou, Xuewei Hou, Fuqi Si, and Wenqing Liu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-859, https://doi.org/10.5194/acp-2022-859, 2023
Revised manuscript not accepted
Short summary
Short summary
We found that all instruments recorded severe ozone depletion from March 18 to April 18, 2020. The effect of the polar vortex on ozone depletion in the stratosphere was clear. Additionally, the SD-WACCM model results indicated that both ClO and BrO concentrations peaked in late March. Before chlorine activation began, bromine mainly existed as HOBr; however, after chlorine activation, bromine mainly existed in the form of BrCl.
Yan Xiang, Tianshu Zhang, Chaoqun Ma, Lihui Lv, Jianguo Liu, Wenqing Liu, and Yafang Cheng
Atmos. Chem. Phys., 21, 7023–7037, https://doi.org/10.5194/acp-21-7023-2021, https://doi.org/10.5194/acp-21-7023-2021, 2021
Short summary
Short summary
For the first time, a vertical observation network consisting of 13 aerosol lidars and more than 1000 ground observation stations were combined with a data assimilation technique to reveal key processes driving the 3-D dynamic evolution of PM2.5 concentrations during extreme heavy aerosol pollution on the North China Plain.
Ke Tang, Min Qin, Wu Fang, Jun Duan, Fanhao Meng, Kaidi Ye, Helu Zhang, Pinhua Xie, Yabai He, Wenbin Xu, Jianguo Liu, and Wenqing Liu
Atmos. Meas. Tech., 13, 6487–6499, https://doi.org/10.5194/amt-13-6487-2020, https://doi.org/10.5194/amt-13-6487-2020, 2020
Short summary
Short summary
We present an improved instrument for the simultaneous detection of atmospheric nitrous acid (HONO) and nitrogen dioxide (NO2). The robustness of the system is verified by simulating the influence of the relative change in light intensity on the measurement results. The instrument's capability to make fast high-sensitivity measurements of HONO and NO2 is of great significance for understanding the source of HONO and studying its role in atmospheric chemistry.
Cited articles
Browell, E. V., Ismail, S., and Grant, W. B.: Differential absorption lidar (DIAL) measurements from air and space, Appl. Phys. B, 67, 399–410, https://doi.org/10.1007/s003400050523,1998.
Chen, X., Zhong, B. Q., Huang, F. X., Wang, X. M., Sarkar, S., Jia, S. G., Deng, X. J., Chen, D. H., and Shao, M.: The role of natural factors in constraining long-term tropospheric ozone trends over Southern China, Atmos. Environ., 220, 117060, https://doi.org/10.1016/j.atmosenv.2019.117060,2020.
Chi, X., Liu, C., Xie, Z., Fan, G., Wang, Y., He, P., Fan, S., Hong, Q., Wang, Z., Yu, X., Yue, F., Duan, J., Zhang, P., and Liu, J.: Observations of ozone vertical profiles and corresponding precursors in the low troposphere in Beijing, China, Atmos. Res., 213, 224–235, https://doi.org/10.1016/j.atmosres.2018.06.012, 2018.
Clain, G., Baray, J. L., Delmas, R., Keckhut, P., and Cammas, J. P.: A lagrangian approach to analyse the tropospheric ozone climatology in the tropics: Climatology of stratosphere-troposphere exchange at Reunion Island, Atmos. Environ., 44, 968–975, https://doi.org/10.1016/j.atmosenv.2009.08.048,2010.
Dolgii, S. I., Nevzorov, A. A., Nevzorov, A. V., Romanovskii, O. A., and Kharchenko, O. V.: Intercomparison of Ozone Vertical Profile Measurements by Differential Absorption Lidar and IASI/MetOp Satellite in the Upper Troposphere-Lower Stratosphere, Remote Sens., 9, 447, https://doi.org/10.3390/rs9050447,2017.
Fan, G., Zhang, B., Zhang, T., Fu, Y., Pei, C., Lou, S., Li, X., Chen, Z., and Liu, W.: Accuracy of evaluation of differential absorption lidar for ozone detection and intercomparisons with other instruments, Remote Sens., 16, 2369, https://doi.org/10.3390/rs16132369, 2024.
Fix, A., Wirth, M., Meister, A., Ehret, G., Pesch, M., and Weidauer, D.: Tunable ultraviolet optical parametric oscillator for differential absorption lidar measurements of tropospheric ozone, Appl. Phys. B, 75, 153–163, https://doi.org/10.1007/s00340-002-0964-y, 2002.
Hwang, I. D., Veselovsky, I. A., Lee, C. H., and Lee, Y. W.: Raman Conversion of Krf Laser in Mixed H2+D2 Gas and D2 for Tropospheric Ozone Sounding, IEEE Leos. Ann. Mtg., LEOS'93, 736–737, https://doi.org/10.1109/LEOS.1993.379401,1993.
Koo, B., Jung, J., Pollack, A. K., Lindhjem, C., Jimenez, M., and Yarwood, G.: Impact of meteorology and anthropogenic emissions on the local and regional ozone weekend effect in Midwestern US, Atmos. Environ., 57, 13–21, https://doi.org/10.1016/j.atmosenv.2012.04.043,2012.
Kuang, S., Newchurch, M. J., Burris, J., and Liu, X.: Ground-based lidar for atmospheric boundary layer ozone measurements, Appl. Opt., 52, 3557–3566, https://doi.org/10.1364/AO.52.003557,2013.
Langford, A. O., Alvarez II, R. J., Kirgis, G., Senff, C. J., Caputi, D., Conley, S. A., Faloona, I. C., Iraci, L. T., Marrero, J. E., McNamara, M. E., Ryoo, J.-M., and Yates, E. L.: Intercomparison of lidar, aircraft, and surface ozone measurements in the San Joaquin Valley during the California Baseline Ozone Transport Study (CABOTS), Atmos. Meas. Tech., 12, 1889–1904, https://doi.org/10.5194/amt-12-1889-2019, 2019.
Li, X. B., Wang, D. F., Lu, Q. C., Peng, Z. R., Fu, Q. Y., Hu, X. M., Huo, J. T., Xiu, G. L., Li, B., Li, C., Wang, D. S., and Wang, H. Y.: Three-dimensional analysis of ozone and PM2.5 distributions obtained by observations of tethered balloon and unmannedaerial vehicle in Shanghai, China, Stoch. Env. Res. Risk A, 32, 1189–1203, https://doi.org/10.1007/s00477-018-1524-2, 2018.
Lokoshchenko, M. A. and Shifrin, D. M.: Temperature stratification and altitude ozone variability in the low troposphere from acoustic and balloon sounding, Russ. Meteorol. Hydrol., 34, 72–82, https://doi.org/10.3103/S1068373909020022,2009.
Machol, J. L., Marchbanks, R. D., Senff, C. J., McCarty, B. J., Eberhard, W. L., Brewer, W. A., Richter, R. A., Alvarez, R. J., Law, D. C., Weickmann, A. M., and Sandberg, S. P.: Scanning tropospheric ozone and aerosol lidar with double-gated photomultipliers, Appl. Opt., 48, 512–524, https://doi.org/10.1364/AO.48.000512,2009.
Nakazato, M., Nagai, T., Sakai, T., and Hirose, Y.: Tropospheric ozone differential-absorption lidar using stimulated Raman scattering in carbon dioxide, Appl. Opt., 46, 2269–2279, https://doi.org/10.1364/AO.46.002269,2007.
Olsen, M. A., Schoeberl, M. R., and Douglass, A. R.: Stratosphere-troposphere exchange of mass and ozone, J. Geophys. Res.-Atmos., 109, D24, https://doi.org/10.1029/2004JD005186,2004.
Osterman, G. B., Kulawik, S. S., Worden, H. M., Richards, N. A. D., Fisher, B. M., Eldering, A., Shephard, M. W., Froidevaux, L., Labow, G., Luo, M., Herman, R. L., Bowman, K. W., and Thompson, A. M.: Validation of Tropospheric Emission Spectrometer (TES) measurements of the total, stratospheric, and tropospheric column abundance of ozone, J. Geophys. Res.-Atmos., 113, D15, https://doi.org/10.1029/2007JD008801,2008.
Qian, Y., Luo, Y., Si, F., Zhou, H., Yang, T., Yang, D., and Xi, L.: Total ozone columns from the environmental trace gases monitoring instrument (EMI) using the DOAS method, Remote Sens., 13, 2098, https://doi.org/10.3390/rs13112098, 2021.
Schuepbach, E., Davies, T. D., Massacand, A. C., and Wernli, H.: Mesoscale modelling of vertical atmospheric transport in the Alps associated with the advection of a tropopause fold – a winter ozone episode, Atmos. Environ., 33, 3613–3626, https://doi.org/10.1016/S1352-2310(99)00103-X,1999.
Sullivan, J. T., McGee, T. J., Sumnicht, G. K., Twigg, L. W., and Hoff, R. M.: A mobile differential absorption lidar to measure sub-hourly fluctuation of tropospheric ozone profiles in the Baltimore–Washington, D.C. region, Atmos. Meas. Tech., 7, 3529–3548, https://doi.org/10.5194/amt-7-3529-2014, 2014.
Sun, L., Wong, K. C., Wei, P., Ye, S., Huang, H., Yang, F. H., Westerdahl, D., Louie, P. K. K., Luk, C. W. Y., and Ning, Z.: Development and Application of a Next Generation Air Sensor Network for the Hong Kong Marathon 2015 Air Quality Monitoring, Sensors-Basel, 16, 211, https://doi.org/10.3390/s16020211,2016.
Wang, M. and Fu, Q.: Changes in stratosphere-troposphere exchange of air mass and ozone concentration in CCMI models from 1960 to 2099, J. Geophys. Res.-Atmos., 128, https://doi.org/10.1029/2023JD038487, 2023.
Wang, T., Xue, L. K., Brimblecombe, P., Lam, Y. F., Li, L., and Zhang, L.: Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects, Sci. Total Environ., 575, 1582–1596, https://doi.org/10.1016/j.scitotenv.2016.10.081, 2017.
Wang, X., Xiang, Y., Liu, W., Lv, L., Dong, Y., Fan, G., Ou, J., and Zhang, T.: Vertical profiles and regional transport of ozone and aerosols in the Yangtze River Delta during the 2016 G20 summit based on multiple lidars, Atmos. Environ., 259, 118506, https://doi.org/10.1016/j.atmosenv.2021.118506, 2021.
Worden, H. M., Logan, J. A., Worden, J. R., Beer, R., Bowman, K., Clough, S. A., Eldering, A., Fisher, B. M., Gunson, M. R., Herman, R. L., Kulawik, S. S., Lampel, M. C., Luo, M., Megretskaia, I. A., Osterman, G. B., and Shephard, M. W.: Comparisons of Tropospheric Emission Spectrometer (TES) ozone profiles to ozonesondes: Methods and initial results, J. Geophys. Res.-Atmos., 112, D3, https://doi.org/10.1029/2006JD007258, 2007.
Short summary
Our research introduces a differential absorption lidar system for monitoring tropospheric ozone, utilizing a single CO2 Raman cell. This technology enables the acquisition of high-resolution vertical ozone profiles from 0.3 to 4 km, essential for understanding air quality and climate impacts.
Our research introduces a differential absorption lidar system for monitoring tropospheric...