Articles | Volume 18, issue 20
https://doi.org/10.5194/amt-18-5569-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-18-5569-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessing nitrogen dioxide monitoring techniques: a comparative analysis of Sentinel-5 Precursor satellite and ground measurements in Catalonia
Danielly Garcia Santos
CORRESPONDING AUTHOR
Centre Tecnològic de Telecomunicacions de Catalunya-CERCA, Parc Mediterrani de la Tecnologia, Building B4, Av. Carl Friedrich Gauss 7, Castelldefels, 08860, Barcelona, Spain
Maria Eulàlia Parés
Centre Tecnològic de Telecomunicacions de Catalunya-CERCA, Parc Mediterrani de la Tecnologia, Building B4, Av. Carl Friedrich Gauss 7, Castelldefels, 08860, Barcelona, Spain
Related authors
J. A. Navarro, D. García, M. Crosetto, and O. Monserrat
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 313–320, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-313-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-313-2022, 2022
J. A. Navarro, D. García, M. Crosetto, and O. Monserrat
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 313–320, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-313-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-313-2022, 2022
E. Angelats, P. F. Espín-López, J. A. Navarro, and M. E. Parés
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B4-2021, 229–235, https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-229-2021, https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-229-2021, 2021
D. Garcia, F. Vázquez-Gallego, and M. E. Parés
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B4-2021, 361–366, https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-361-2021, https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-361-2021, 2021
Cited articles
Balestrini, M., Kotsev, A., Ponti, M., and Schade, S.: Collaboration matters: capacity building, up-scaling, spreading, and sustainability in citizen-generated data projects, Humanit. Soc. Sci. Commun., 8, 169, https://doi.org/10.1057/s41599-021-00851-5, 2021. a
Chatterjee, S., and Hadi, A. S.: Regression Analysis by Example, 5th edn., Wiley, ISBN 978-0-470-90584-5, 2012. a
Choo, G.-H., Lee, K., Hong, H., Jeong, U., Choi, W., and Janz, S. J.: Highly resolved mapping of NO2 vertical column densities from GeoTASO measurements over a megacity and industrial area during the KORUS-AQ campaign, Atmos. Meas. Tech., 16, 625–644, https://doi.org/10.5194/amt-16-625-2023, 2023. a
Copernicus: OBSERVER: Sentinel-4 – A new era in European air quality monitoring, Copernicus, https://www.copernicus.eu/en/news/news/observer-sentinel-4-new-era-european-air-quality-monitoring, last access: 2 April 2025. a
Dimitropoulou, E., Hendrick, F., Pinardi, G., Friedrich, M. M., Merlaud, A., Tack, F., De Longueville, H., Fayt, C., Hermans, C., Laffineur, Q., Fierens, F., and Van Roozendael, M.: Validation of TROPOMI tropospheric NO2 columns using dual-scan multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements in Uccle, Brussels, Atmos. Meas. Tech., 13, 5165–5191, https://doi.org/10.5194/amt-13-5165-2020, 2020. a
Douros, J., Eskes, H., van Geffen, J., Boersma, K. F., Compernolle, S., Pinardi, G., Blechschmidt, A.-M., Peuch, V.-H., Colette, A., and Veefkind, P.: Comparing Sentinel-5P TROPOMI NO2 column observations with the CAMS regional air quality ensemble, Geosci. Model Dev., 16, 509–534, https://doi.org/10.5194/gmd-16-509-2023, 2023. a, b, c, d, e, f
Dvořák, R., Chlápek, P., Jecha, D., Puchýř, R., and Stehlík, P.: New approach to common removal of dioxins and NOx as a contribution to environmental protection, J. Clean. Prod., 18, 881–888, https://doi.org/10.1016/j.jclepro.2010.01.024, 2010. a
European Committee for Standardization (CEN): EN 14211:2012 Ambient air – Standard method for the measurement of the concentration of nitrogen dioxide and nitric oxide by chemiluminescence, European Committee for Standardization, Brussels, https://standards.cencenelec.eu/dyn/www/f?p=CEN:110:0::::FSP_PROJECT,FSP_ORG_ID:67486,6245&cs=14FE9683506ED10DD59EF1FF589C897A4 (last access: 8 October 2025), 2012. a
European Space Agency: European Space Agency S5P Level-1b and Level-2 Product Validation Requirements Document, https://sentinels.copernicus.eu/documents/247904/2506504/S5P-Level-1b-L2-numbered-validation-requirements.pdf (last access: 8 October 2025), 2015. a
European Space Agency: Sentinel-5P Nitrogen Dioxide Level 2 Product Readme File, https://sentinels.copernicus.eu/documents/247904/3541451/Sentinel-5P-Nitrogen-Dioxide-Level-2-Product-Readme-File (last access: 19 October 2024), 2023. a
European Space Agency: Sentinel-5P Mission Overview, Sentiwiki Copernicus, https://sentiwiki.copernicus.eu/web/s5p-mission, last access: 12 October 2024. a
Filonchyk, M., and Peterson, M. P.: Analysis of air pollution from vehicle emissions for the contiguous United States, J. Geovis. Spat. Anal., 8, 16, https://doi.org/10.1007/s41651-024-00180-6, 2024. a
Finch, D. P., Palmer, P. I., and Zhang, T.: Automated detection of atmospheric NO2 plumes from satellite data: a tool to help infer anthropogenic combustion emissions, Atmos. Meas. Tech., 15, 721–733, https://doi.org/10.5194/amt-15-721-2022, 2022. a, b
Gencat: Politics and economy, https://web.gencat.cat/en/temes/catalunya/coneixer/politica-economia/index.html (last access: 16 July 2024), 2022a. a
Gencat: Xarxa de Vigilància i Previsió de la Contaminació Atmosfèrica (XVPCA) – Conceptes clau, https://mediambient.gencat.cat/ca/05_ambits_dactuacio/atmosfera/qualitat_de_laire/avaluacio/xarxa_de_vigilancia_i_previsio_de_la_contaminacio_atmosferica_xvpca/conceptes_clau/ (last access: 24 July 2024), 2024a. a, b
Gencat: Zones de qualitat de l'aire (ZQA), 2024, https://mediambient.gencat.cat/es/detalls/Articles/Zones-de-qualitat-de-laire_ZQA (last access: 24 July 2024), 2024b. a
Google Earth Engine: COPERNICUS/S5P OFFL L3 NO2: Tropospheric NO2 (Offline, Level 3), Google Earth Engine, https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_NO2 (last access: 6 May 2025), 2019. a
Han, S., Bian, H., Feng, Y., Liu, A., Li, X., Zeng, F., and Zhang, X.: Analysis of the relationship between O3, NO, and NO2 in Tianjin, China, Aerosol Air Qual. Res., 11, 128–139, https://doi.org/10.4209/aaqr.2010.07.0055, 2011. a, b
Hu, M., Bai, K., Li, K., Zheng, Z., Sun, Y., Shao, L., Li, R., and Liu, C.: Improving machine-learned surface NO2 concentration mapping models with domain knowledge from data science perspective, Atmos. Environ., 322, 120372, https://doi.org/10.1016/j.atmosenv.2024.120372, 2024. a, b
Ialongo, I., Virta, H., Eskes, H., Hovila, J., and Douros, J.: Comparison of TROPOMI/Sentinel-5 Precursor NO2 observations with ground-based measurements in Helsinki, Atmos. Meas. Tech., 13, 205–218, https://doi.org/10.5194/amt-13-205-2020, 2020. a, b
Idescat: Geographical and political boundaries. Counties and Aran, and provinces, 2020, https://www.idescat.cat/indicadors/?id=aec&n=15179&lang=en (last access: 24 July 2024), 2020. a
Jamali, S., Klingmyr, D., and Tagesson, T.: Global-scale patterns and trends in tropospheric NO2 concentrations, 2005–2018, Remote Sens.-Basel, 12, 3526, https://doi.org/10.3390/rs12213526, 2020. a
Kim, J., Jeong, U., Ahn, M., Kim, J. H., Park, R. J., Lee, H., Song, C. H., Choi, Y., Lee, K., Yoo, J., Jeong, M., Park, S. K., Lee, K., Song, C., Kim, S., Kim, Y. J., Kim, S., Kim, M., Go, S., Liu, X., Chance, K., Chan Miller, C., Al-Saadi, J., Veihelmann, B., Bhartia, P. K., Torres, O., Abad, G. G., Haffner, D. P., Ko, D. H., Lee, S. H., Woo, J., Chong, H., Park, S. S., Nicks, D., Choi, W. J., Moon, K., Cho, A., Yoon, J., Kim, S., Hong, H., Lee, K., Lee, H., Lee, S., Choi, M., Veefkind, P., Levelt, P. F., Edwards, D. P., Kang, M., Eo, M., Bak, J., Baek, K., Kwon, H., Yang, J., Park, J., Han, K. M., Kim, B., Shin, H., Choi, H., Lee, E., Chong, J., Cha, Y., Koo, J., Irie, H., Hayashida, S., Kasai, Y., Kanaya, Y., Liu, C., Lin, J., Crawford, J. H., Carmichael, G. R., Newchurch, M. J., Lefer, B. L., Herman, J. R., Swap, R. J., Lau, A. K. H., Kurosu, T. P., Jaross, G., Ahlers, B., Dobber, M., McElroy, C. T., and Choi, Y.: New era of air quality monitoring from space: Geostationary Environment Monitoring Spectrometer (GEMS), B. Am. Meteorol. Soc., 101, E1–E22, https://doi.org/10.1175/BAMS-D-18-0013.1, 2020. a
Li, X., Hu, X.-M., Ma, Y., Wang, Y., Li, L., and Zhao, Z.: Impact of planetary boundary layer structure on the formation and evolution of air-pollution episodes in Shenyang, Northeast China, Atmos. Environ., 214, 116850, https://doi.org/10.1016/j.atmosenv.2019.116850, 2019. a
Mauro, F., Russo, L., Janku, F., Sebastianelli, A., and Ullo, S. L.: Estimation of ground NO2 measurements from Sentinel-5P tropospheric data through categorical boosting, in: 2023 IEEE International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE), Milan, Italy, 1116–1121, https://doi.org/10.1109/MetroXRAINE58569.2023.10405670, 2023. a, b
Morillas, C., Álvarez, S., Serio, C., Masiello, G., and Martínez, S.: TROPOMI NO2 Sentinel-5P data in the Community of Madrid: a detailed consistency analysis with in situ surface observations, Remote Sens. Appl. Soc. Environ., 33, 101083, https://doi.org/10.1016/j.rsase.2023.101083, 2024. a, b, c, d, e
Munir, S., Mayfield, M., and Coca, D.: Understanding spatial variability of NO2 in urban areas using spatial modelling and data fusion approaches, Atmosphere-Basel, 12, 179, https://doi.org/10.3390/atmos12020179, 2021. a, b, c
Omrani, H., Omrani, B., Parmentier, B., and Helbich, M.: Spatio-temporal data on the air pollutant nitrogen dioxide derived from Sentinel satellite for France, Data Brief, 28, 105089, https://doi.org/10.1016/j.dib.2019.105089, 2020. a
Petetin, H., Guevara, M., Compernolle, S., Bowdalo, D., Bretonnière, P.-A., Enciso, S., Jorba, O., Lopez, F., Soret, A., and Pérez García-Pando, C.: Potential of TROPOMI for understanding spatio-temporal variations in surface NO2 and their dependencies upon land use over the Iberian Peninsula, Atmos. Chem. Phys., 23, 3905–3935, https://doi.org/10.5194/acp-23-3905-2023, 2023. a, b, c, d
Pinardi, G., Van Roozendael, M., Hendrick, F., Theys, N., Abuhassan, N., Bais, A., Boersma, F., Cede, A., Chong, J., Donner, S., Drosoglou, T., Dzhola, A., Eskes, H., Frieß, U., Granville, J., Herman, J. R., Holla, R., Hovila, J., Irie, H., Kanaya, Y., Karagkiozidis, D., Kouremeti, N., Lambert, J.-C., Ma, J., Peters, E., Piters, A., Postylyakov, O., Richter, A., Remmers, J., Takashima, H., Tiefengraber, M., Valks, P., Vlemmix, T., Wagner, T., and Wittrock, F.: Validation of tropospheric NO2 column measurements of GOME-2A and OMI using MAX-DOAS and direct sun network observations, Atmos. Meas. Tech., 13, 6141–6174, https://doi.org/10.5194/amt-13-6141-2020, 2020. a
Salmani, B., Ardakani, A., Alavi, S. J., Kiani, M. H., Ebrahimian, S., and Mohammadi, O.: Monitoring trends of CO, NO2, SO2, and O3 pollutants using time-series Sentinel-5 images based on Google Earth Engine, Pollutants, 3, 255–279, https://doi.org/10.3390/pollutants3020019, 2023. a
Tonion, F. and Pirotti, F.: SENTINEL-5P NO2 DATA: CROSS-VALIDATION AND COMPARISON WITH GROUND MEASUREMENTS, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 749–756, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-749-2022, 2022. a, b
van Geffen, J., Eskes, H., Compernolle, S., Pinardi, G., Verhoelst, T., Lambert, J.-C., Sneep, M., ter Linden, M., Ludewig, A., Boersma, K. F., and Veefkind, J. P.: Sentinel-5P TROPOMI NO2 retrieval: impact of version v2.2 improvements and comparisons with OMI and ground-based data, Atmos. Meas. Tech., 15, 2037–2060, https://doi.org/10.5194/amt-15-2037-2022, 2022. a, b
Veefkind, J. P., Aben, I., McMullan, K., Förster, H., de Vries, J., Otter, G., Claas, J., Eskes, H. J., de Haan, J. F., Kleipool, Q., van Weele, M., Hasekamp, O., Hoogeveen, R., Landgraf, J., Snel, R., Tol, P., Ingmann, P., Voors, R., Kruizinga, B., Vink, R., Visser, H., and Levelt, P. F.: TROPOMI on the ESA Sentinel-5 precursor: a GMES mission for global observations of atmospheric composition for climate, air quality, and ozone layer applications, Remote Sens. Environ., 120, 70–83, https://doi.org/10.1016/j.rse.2011.09.027, 2012. a, b, c, d, e
Verhoelst, T., Compernolle, S., Pinardi, G., Lambert, J.-C., Eskes, H. J., Eichmann, K.-U., Fjæraa, A. M., Granville, J., Niemeijer, S., Cede, A., Tiefengraber, M., Hendrick, F., Pazmiño, A., Bais, A., Bazureau, A., Boersma, K. F., Bognar, K., Dehn, A., Donner, S., Elokhov, A., Gebetsberger, M., Goutail, F., Grutter de la Mora, M., Gruzdev, A., Gratsea, M., Hansen, G. H., Irie, H., Jepsen, N., Kanaya, Y., Karagkiozidis, D., Kivi, R., Kreher, K., Levelt, P. F., Liu, C., Müller, M., Navarro Comas, M., Piters, A. J. M., Pommereau, J.-P., Portafaix, T., Prados-Roman, C., Puentedura, O., Querel, R., Remmers, J., Richter, A., Rimmer, J., Rivera Cárdenas, C., Saavedra de Miguel, L., Sinyakov, V. P., Stremme, W., Strong, K., Van Roozendael, M., Veefkind, J. P., Wagner, T., Wittrock, F., Yela González, M., and Zehner, C.: Ground-based validation of the Copernicus Sentinel-5P TROPOMI NO2 measurements with the NDACC ZSL-DOAS, MAX-DOAS and Pandonia global networks, Atmos. Meas. Tech., 14, 481–510, https://doi.org/10.5194/amt-14-481-2021, 2021. a, b, c
Verma, A., Ranga, V., and Vishwakarma, D. K.: BREATH-Net: a novel deep learning framework for NO2 prediction using bi-directional encoder with transformer, Environ. Monit. Assess., 196, https://doi.org/10.1007/s10661-024-12455-y, 2024. a, b
Voiculescu, M., Constantin, D.-E., Condurache-Bota, S., Călmuc, V., Rosu, A., and Dragomir Bălănică, C. M.: Role of meteorological parameters in the diurnal and seasonal variation of NO2 in a Romanian urban environment, Int. J. Environ. Res. Public Health, 17, 6228, https://doi.org/10.3390/ijerph17176228, 2020. a, b
Wang, H., Luo, X., Liu, C., Fu, Q., and Yi, M.: Spatio-temporal variation-induced group disparity of intra-urban NO2 exposure, Int. J. Environ. Res. Public Health, 19, 5872, https://doi.org/10.3390/ijerph19105872, 2022. a, b
World Health Organization: Ambient air pollution: a global assessment of exposure and burden of disease, World Health Organization, 121pp., https://apps.who.int/iris/handle/10665/250141 (last access: 10 April 2024), 2016. a
World Health Organization: WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide, and carbon monoxide, World Health Organization, xxi + 273pp., https://apps.who.int/iris/handle/10665/345329 (last access: 10 April 2024), 2021. a
Yang, J., Honrath, R. E., Peterson, M. C., Parrish, D. D., and Warshawsky, M.: Photostationary state deviation-estimated peroxy radicals and their implications for HOx and ozone photochemistry at a remote northern Atlantic coastal site, J. Geophys. Res.-Atmos., 109, D02312, https://doi.org/10.1029/2003JD003983, 2004. a
Zoogman, P., Liu, X., Suleiman, R. M., Pennington, W. F., Flittner, D. E., Al-Saadi, J. A., Hilton, B. B., Nicks, D. K., Newchurch, M. J., Carr, J. L., Janz, S. J., Andraschko, M. R., Arola, A., Baker, B. D., Canova, B. P., Chan Miller, C., Cohen, R. C., Davis, J. E., Dussault, M. E., Edwards, D. P., Fishman, J., Ghulam, A., González Abad, G., Grutter, M., Herman, J. R., Houck, J., Jacob, D. J., Joiner, B. J., Kerridge, J., Kim, J., Krotkov, N. A., Lamsal, L., Li, C., Lindfors, A., Martin, R. V., McElroy, C. T., McLinden, C., Natraj, V., Neil, D. O., Nowlan, C. R., O'Sullivan, E. J., Palmer, P. I., Pierce, R. B., Pippin, M. R., Saiz-Lopez, A., Spurr, R. J. D., Szykman, J. J., Torres, O., Veefkind, J. P., Veihelmann, B., Wang, H., Wang, J., and Chance, K.: Tropospheric Emissions: Monitoring of Pollution (TEMPO), J. Quant. Spectrosc. Ra., 186, 17–39, https://doi.org/10.1016/j.jqsrt.2016.05.008, 2017. a
Short summary
This study analyzes nitrogen dioxide available data in Catalonia, a region with diverse geography and climate, by comparing satellite- and ground-based data from 2022–2023. Analyses at various scales showed a moderate overall correlation – stronger in suburban areas and weaker in urban zones. Correlations peaked in winter and autumn, likely due to stable weather. The findings suggest that satellite data can complement ground monitoring but require adjustments for regional and climatic variations.
This study analyzes nitrogen dioxide available data in Catalonia, a region with diverse...