Articles | Volume 18, issue 20
https://doi.org/10.5194/amt-18-5861-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-18-5861-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Field-deployable branch enclosure system for biogenic volatile organic compounds emitted from conifers
Yuki Ota
CORRESPONDING AUTHOR
Department of Ecosystem Studies, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
National Institute for Environmental Studies, Tsukuba, 305-8506, Japan
Takuya Saito
CORRESPONDING AUTHOR
Department of Ecosystem Studies, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
National Institute for Environmental Studies, Tsukuba, 305-8506, Japan
Stephen J. Andrews
Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, YO10 5DD, UK
Tetsuo I. Kohyama
Department of Ecosystem Studies, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
Yoshihisa Suyama
Field Science Centre, Graduate School of Agricultural Science, Tohoku University, Osaki 989-6711, Japan
Yoshihiko Tsumura
Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
Tsutom Hiura
Department of Ecosystem Studies, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
Related authors
No articles found.
Masahito Ueyama, Yuta Takao, Hiromi Yazawa, Makiko Tanaka, Hironori Yabuki, Tomo'omi Kumagai, Hiroki Iwata, Md. Abdul Awal, Mingyuan Du, Yoshinobu Harazono, Yoshiaki Hata, Takashi Hirano, Tsutom Hiura, Reiko Ide, Sachinobu Ishida, Mamoru Ishikawa, Kenzo Kitamura, Yuji Kominami, Shujiro Komiya, Ayumi Kotani, Yuta Inoue, Takashi Machimura, Kazuho Matsumoto, Yojiro Matsuura, Yasuko Mizoguchi, Shohei Murayama, Hirohiko Nagano, Taro Nakai, Tatsuro Nakaji, Ko Nakaya, Shinjiro Ohkubo, Takeshi Ohta, Keisuke Ono, Taku M. Saitoh, Ayaka Sakabe, Takanori Shimizu, Seiji Shimoda, Michiaki Sugita, Kentaro Takagi, Yoshiyuki Takahashi, Naoya Takamura, Satoru Takanashi, Takahiro Takimoto, Yukio Yasuda, Qinxue Wang, Jun Asanuma, Hideo Hasegawa, Tetsuya Hiyama, Yoshihiro Iijima, Shigeyuki Ishidoya, Masayuki Itoh, Tomomichi Kato, Hiroaki Kondo, Yoshiko Kosugi, Tomonori Kume, Takahisa Maeda, Shoji Matsuura, Trofim Maximov, Takafumi Miyama, Ryo Moriwaki, Hiroyuki Muraoka, Roman Petrov, Jun Suzuki, Shingo Taniguchi, and Kazuhito Ichii
Earth Syst. Sci. Data, 17, 3807–3833, https://doi.org/10.5194/essd-17-3807-2025, https://doi.org/10.5194/essd-17-3807-2025, 2025
Short summary
Short summary
The JapanFlux2024 dataset, created through collaboration across Japan and East Asia, includes eddy covariance data from 83 sites spanning 683 site-years (1990–2023). This comprehensive dataset offers valuable insights into energy, water, and CO2 fluxes, supporting research on land–atmosphere interactions and process models; fosters global collaboration; and advances research in environmental science and regional climate dynamics.
Hideki Nara, Takuya Saito, Taku Umezawa, and Yasunori Tohjima
Atmos. Meas. Tech., 17, 5187–5200, https://doi.org/10.5194/amt-17-5187-2024, https://doi.org/10.5194/amt-17-5187-2024, 2024
Short summary
Short summary
We have developed a high-accuracy dynamic dilution system for generating reference gas mixtures containing carbonyl sulfide (COS). Although COS at ambient levels generally has poor storage stability, our approach involves the dilution of a gas mixture containing micromole-per-mole levels of COS, the stability of which was validated for more than 1 decade. The developed system has excellent dilution performance and will facilitate accurate instrumental calibration for atmospheric COS observation.
Jianghao Li, Alastair C. Lewis, Jim R. Hopkins, Stephen J. Andrews, Tim Murrells, Neil Passant, Ben Richmond, Siqi Hou, William J. Bloss, Roy M. Harrison, and Zongbo Shi
Atmos. Chem. Phys., 24, 6219–6231, https://doi.org/10.5194/acp-24-6219-2024, https://doi.org/10.5194/acp-24-6219-2024, 2024
Short summary
Short summary
A summertime ozone event at an urban site in Birmingham is sensitive to volatile organic compounds (VOCs) – particularly those of oxygenated VOCs. The roles of anthropogenic VOC sources in urban ozone chemistry are examined by integrating the 1990–2019 national atmospheric emission inventory into model scenarios. Road transport remains the most powerful means of further reducing ozone in this case study, but the benefits may be offset if solvent emissions of VOCs continue to increase.
Lucy V. Brown, Ryan J. Pound, Lyndsay S. Ives, Matthew R. Jones, Stephen J. Andrews, and Lucy J. Carpenter
Atmos. Chem. Phys., 24, 3905–3923, https://doi.org/10.5194/acp-24-3905-2024, https://doi.org/10.5194/acp-24-3905-2024, 2024
Short summary
Short summary
Ozone is deposited from the lower atmosphere to the surface of the ocean; however, the chemical reactions which drive this deposition are currently not well understood. Of particular importance is the reaction between ozone and iodide, and this work measures the kinetics of this reaction and its temperature dependence, which we find to be negligible. We then investigate the subsequent emissions of iodine-containing species from the surface ocean, which can further impact ozone.
Magdalena Pühl, Anke Roiger, Alina Fiehn, Alan M. Gorchov Negron, Eric A. Kort, Stefan Schwietzke, Ignacio Pisso, Amy Foulds, James Lee, James L. France, Anna E. Jones, Dave Lowry, Rebecca E. Fisher, Langwen Huang, Jacob Shaw, Prudence Bateson, Stephen Andrews, Stuart Young, Pamela Dominutti, Tom Lachlan-Cope, Alexandra Weiss, and Grant Allen
Atmos. Chem. Phys., 24, 1005–1024, https://doi.org/10.5194/acp-24-1005-2024, https://doi.org/10.5194/acp-24-1005-2024, 2024
Short summary
Short summary
In April–May 2019 we carried out an airborne field campaign in the southern North Sea with the aim of studying methane emissions of offshore gas installations. We determined methane emissions from elevated methane measured downstream of the sampled installations. We compare our measured methane emissions with estimated methane emissions from national and global annual inventories. As a result, we find inconsistencies of inventories and large discrepancies between measurements and inventories.
Adedayo R. Adedeji, Stephen J. Andrews, Matthew J. Rowlinson, Mathew J. Evans, Alastair C. Lewis, Shigeru Hashimoto, Hitoshi Mukai, Hiroshi Tanimoto, Yasunori Tohjima, and Takuya Saito
Atmos. Chem. Phys., 23, 9229–9244, https://doi.org/10.5194/acp-23-9229-2023, https://doi.org/10.5194/acp-23-9229-2023, 2023
Short summary
Short summary
We use the GEOS-Chem model to interpret observations of CO, C2H6, C3H8, NOx, NOy and O3 made from Hateruma Island in 2018. The model captures many synoptic-scale events and the seasonality of most pollutants at the site but underestimates C2H6 and C3H8 during the winter. These underestimates are unlikely to be reconciled by increases in biomass burning emissions but could be reconciled by increasing the Asian anthropogenic source of C2H6 and C3H8 by factors of around 2 and 3, respectively.
John W. Halfacre, Jordan Stewart, Scott C. Herndon, Joseph R. Roscioli, Christoph Dyroff, Tara I. Yacovitch, Michael Flynn, Stephen J. Andrews, Steven S. Brown, Patrick R. Veres, and Pete M. Edwards
Atmos. Meas. Tech., 16, 1407–1429, https://doi.org/10.5194/amt-16-1407-2023, https://doi.org/10.5194/amt-16-1407-2023, 2023
Short summary
Short summary
This study details a new sampling method for the optical detection of hydrogen chloride (HCl). HCl is an important atmospheric reservoir for chlorine atoms, which can affect nitrogen oxide cycling and the lifetimes of volatile organic compounds and ozone. However, HCl has a high affinity for interacting with surfaces, thereby preventing fast, quantitative measurements. The sampling technique in this study minimizes these surface interactions and provides a high-quality measurement of HCl.
Taku Umezawa, Satoshi Sugawara, Kenji Kawamura, Ikumi Oyabu, Stephen J. Andrews, Takuya Saito, Shuji Aoki, and Takakiyo Nakazawa
Atmos. Chem. Phys., 22, 6899–6917, https://doi.org/10.5194/acp-22-6899-2022, https://doi.org/10.5194/acp-22-6899-2022, 2022
Short summary
Short summary
Greenhouse gas methane in the Arctic atmosphere has not been accurately reported for 1900–1980 from either direct observations or ice core reconstructions. By using trace gas data from firn (compacted snow layers above ice sheet), air samples at two Greenland sites, and a firn air transport model, this study suggests a likely range of the Arctic methane reconstruction for the 20th century. Atmospheric scenarios from two previous studies are also evaluated for consistency with the firn data sets.
Shona E. Wilde, Pamela A. Dominutti, Grant Allen, Stephen J. Andrews, Prudence Bateson, Stephane J.-B. Bauguitte, Ralph R. Burton, Ioana Colfescu, James France, James R. Hopkins, Langwen Huang, Anna E. Jones, Tom Lachlan-Cope, James D. Lee, Alastair C. Lewis, Stephen D. Mobbs, Alexandra Weiss, Stuart Young, and Ruth M. Purvis
Atmos. Chem. Phys., 21, 3741–3762, https://doi.org/10.5194/acp-21-3741-2021, https://doi.org/10.5194/acp-21-3741-2021, 2021
Short summary
Short summary
We use airborne measurements to evaluate the speciation of volatile organic compound (VOC) emissions from offshore oil and gas (O&G) installations in the North Sea. The composition of emissions varied across regions associated with either gas, condensate or oil extraction, demonstrating that VOC emissions are not uniform across the whole O&G sector. We compare our results to VOC source profiles in the UK emissions inventory, showing these emissions are not currently fully characterized.
James L. France, Prudence Bateson, Pamela Dominutti, Grant Allen, Stephen Andrews, Stephane Bauguitte, Max Coleman, Tom Lachlan-Cope, Rebecca E. Fisher, Langwen Huang, Anna E. Jones, James Lee, David Lowry, Joseph Pitt, Ruth Purvis, John Pyle, Jacob Shaw, Nicola Warwick, Alexandra Weiss, Shona Wilde, Jonathan Witherstone, and Stuart Young
Atmos. Meas. Tech., 14, 71–88, https://doi.org/10.5194/amt-14-71-2021, https://doi.org/10.5194/amt-14-71-2021, 2021
Short summary
Short summary
Measuring emission rates of methane from installations is tricky, and it is even more so when those installations are located offshore. Here, we show the aircraft set-up and demonstrate an effective methodology for surveying emissions from UK and Dutch offshore oil and gas installations. We present example data collected from two campaigns to demonstrate the challenges and solutions encountered during these surveys.
Cited articles
Arimura, G.-I., Muroi, A., and Nishihara, M.: Plant-plant-plant communications, mediated by (E)-β-ocimene emitted from transgenic tobacco plants, prime indirect defense responses of lima beans, Journal of Plant Interactions, 7, 193–196, https://doi.org/10.1080/17429145.2011.650714, 2012.
Birami, B., Bamberger, I., Ghirardo, A., Grote, R., Arneth, A., Gaona-Colmán, E., Nadal-Sala, D., and Ruehr, N. K.: Heatwave frequency and seedling death alter stress-specific emissions of volatile organic compounds in Aleppo pine, Oecologia, 197, 939–956, https://doi.org/10.1007/s00442-021-04905-y, 2021.
Bourtsoukidis, E., Pozzer, A., Williams, J., Makowski, D., Peñuelas, J., Matthaios, V. N., Lazoglou, G., Yañez-Serrano, A. M., Lelieveld, J., Ciais, P., Vrekoussis, M., Daskalakis, N., and Sciare, J.: High temperature sensitivity of monoterpene emissions from global vegetation, Commun. Earth Environ., 5, 23, https://doi.org/10.1038/s43247-023-01175-9, 2024.
Bourtsoukidis, E., Guenther, A., Wang, H., Economou, T., Lazoglou, G., Christodoulou, A., Christoudias, T., Nölscher, A., Yañez-Serrano, A. M., and Peñuelas, J.: Environmental Change Is Reshaping the Temperature Sensitivity of Sesquiterpene Emissions and Their Atmospheric Impacts, Glob. Change Biol., 31, e70258, https://doi.org/10.1111/gcb.70258, 2025.
Bouvier-Brown, N. C., Holzinger, R., Palitzsch, K., and Goldstein, A. H.: Large emissions of sesquiterpenes and methyl chavicol quantified from branch enclosure measurements, Atmospheric Environment, 43, 389–401, https://doi.org/10.1016/j.atmosenv.2008.08.039, 2009.
Chatani, S., Matsunaga, S. N., and Nakatsuka, S.: Estimate of biogenic VOC emissions in Japan and their effects on photochemical formation of ambient ozone and secondary organic aerosol, Atmospheric Environment, 120, 38–50, https://doi.org/10.1016/j.atmosenv.2015.08.086, 2015.
Chatani, S., Okumura, M., Shimadera, H., Yamaji, K., Kitayama, K., and Matsunaga, S. N.: Effects of a detailed vegetation database on simulated meteorological fields, biogenic VOC emissions, and ambient pollutant concentrations over Japan, Atmosphere, 9, 179, https://doi.org/10.3390/atmos9050179, 2018.
Dada, L., Stolzenburg, D., Simon, M., Fischer, L., Heinritzi, M., Wang, M., Xiao, M., Vogel, A. L., Ahonen, L., Amorim, A., Baalbaki, R., Baccarini, A., Baltensperger, U., Bianchi, F., Daellenbach, K. R., Devivo, J., Dias, A., Dommen, J., Duplissy, J., Finkenzeller, H., Hansel, A., He, X.-C., Hofbauer, V., Hoyle, C. R., Kangasluoma, J., Kim, C., Kürten, A., Kvashnin, A., Mauldin, R., Makhmutov, V., Marten, R., Mentler, B., Nie, W., Petäjä, T., Quéléver, L. L. J., Saathoff, H., Tauber, C., Tome, A., Molteni, U., Volkamer, R., Wagner, R., Wagner, A. C., Wimmer, D., Winkler, P. M., Yan, C., Zha, Q., Rissanen, M., Gordon, H., Curtius, J., Worsnop, D. R., Lehtipalo, K., Donahue, N. M., Kirkby, J., Haddad, I. E., and Kulmala, M.: Role of sesquiterpenes in biogenic new particle formation, Sci Adv., 9, eadi5297, https://doi.org/10.1126/sciadv.adi5297, 2023.
Ghirardo, A., Xie, J., Zheng, X., Wang, Y., Grote, R., Block, K., Wildt, J., Mentel, T., Kiendler-Scharr, A., Hallquist, M., Butterbach-Bahl, K., and Schnitzler, J.-P.: Urban stress-induced biogenic VOC emissions and SOA-forming potentials in Beijing, Atmos. Chem. Phys., 16, 2901–2920, https://doi.org/10.5194/acp-16-2901-2016, 2016.
Guenther, A. B., Zimmerman, P. R., Harley, P. C., and Monson, R. K.: Isoprene and monoterpene emission rate variability' model evaluations and sensitivity analyses, Journal of Geophysical Research, 98, 12609–12617, https://doi.org/10.1029/93JD00527, 1993.
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471–1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012.
Helin, A., Hakola, H., and Hellén, H.: Optimisation of a thermal desorption–gas chromatography–mass spectrometry method for the analysis of monoterpenes, sesquiterpenes and diterpenes, Atmos. Meas. Tech., 13, 3543–3560, https://doi.org/10.5194/amt-13-3543-2020, 2020.
Helmig, D., Daly, R. W., Milford, J., and Guenther, A.: Seasonal trends of biogenic terpene emissions, Chemosphere, 93, 35–46, https://doi.org/10.1016/j.chemosphere.2013.04.058, 2013.
Hiura, T.: Functional biogeography in Japanese cedar, Ecological Research, 38, 42–48, https://doi.org/10.1111/1440-1703.12321, 2022.
Hiura, T., Yoshioka, H., Matsunaga, S. N., Saito, T., Kohyama, T. I., Kusumoto, N., Uchiyama, K., Suyama, Y., and Tsumura, Y.: Diversification of terpenoid emissions proposes a geographic structure based on climate and pathogen composition in Japanese cedar, Scientific Reports, 11, 8307, https://doi.org/10.1038/s41598-021-87810-X, 2021.
Holopainen, J. K. and Gershenzon, J.: Multiple stress factors and the emission of plant VOCs, Trends in Plant Science, 15, 176–184, https://doi.org/10.1016/j.tplants.2010.01.006, 2010.
Ishizaki, S., Kohyama, T. I., Ota, Y., Saito, T., Suyama, Y., Tsumura, Y., and Hiura, T.: Common garden experiments suggest terpene-mediated associations between phyllosphere microbes and Japanese cedar, Sci. Rep., 15, 30691, https://doi.org/10.1038/s41598-025-16496-2, 2025.
Japan Metrological Agency: https://www.jma.go.jp/jma/menu/menureport.html, last access: 20 January 2025.
Jardine, K. J., Zorzanelli, R. F., Gimenez, B. O., Piva, L. R. de Oliveira, Teixeira, A., Fontes, C. G., Robles, E., Higuchi, N., Chambers, J. Q., and Martin, S. T.: Leaf Isoprene and Monoterpene Emission Distribution across Hyperdominant Tree Genera in the Amazon Basin, Phytochemistry, 175, 112366, https://doi.org/10.1016/j.phytochem.2020.112366, 2020.
Kimura, M. K., Uchiyama, K., Nakao, K., Moriguchi, Y., Jose-Maldia, L. S., and Tsumura, Y.: Evidence for cryptic northern refugia in the last glacial period in Cryptomeria japonica, Annals of Botany, 114, 1687–1700, https://doi.org/10.1093/aob/mcu197, 2014.
Kivimäenpää, M., Babalola, A. B., Joutsensaari, J., and Holopainen, J. K.: Methyl salicylate and sesquiterpene emissions are indicative for aphid infestation on Scots pine, Forests, 11, 573, https://doi.org/10.3390/F11050573, 2020.
Laothawornkitkul, J., Taylor, J. E., Paul, N. D., and Hewitt, C. N.: Biogenic volatile organic compounds in the Earth system, New Phytologist, 183, 27–51, https://doi.org/10.1111/j.1469-8137.2009.02859.X, 2009.
Li, L., Guenther, A. B., Xie, S., Gu, D., Seco, R., Nagalingam, S., and Yan, D.: Evaluation of semi-static enclosure technique for rapid surveys of biogenic volatile organic compounds (BVOCs) emission measurements, Atmospheric Environment, 212, 1–5, https://doi.org/10.1016/j.atmosenv.2019.05.029, 2019.
Loreto, F. and Schnitzler, J. P.: Abiotic stresses and induced BVOCs, Trends in Plant Science, 15, 154–166, https://doi.org/10.1016/j.tplants.2009.12.006, 2010.
Matsunaga, S. N., Mochizuki, T., Ohno, T., Endo, Y., Kusumoto, D., and Tani, A.: Monoterpene and sesquiterpene emissions from Sugi (Cryptomeria japonica) based on a branch enclosure measurements, Atmospheric Pollution Research, 2, 16–23, https://doi.org/10.5094/APR.2011.003, 2011.
Matsunaga, S. N., Chatani, S., Nakatsuka, S., Kusumoto, D., Kubota, K., Utsumi, Y., Enoki, T., Tani, A., and Hiura, T.: Determination and potential importance of diterpene (kaur-16-ene) emitted from dominant coniferous trees in Japan, Chemosphere, 87, 886–893, https://doi.org/10.1016/j.chemosphere.2012.01.040, 2012.
Matsunaga, S. N., Niwa, S., Mochizuki, T., Tani, A., Kusumoto, D., Utsumi, Y., Enoki, T., and Hiura, T.: Seasonal variation in basal emission rates and composition of mono- and sesquiterpenes emitted from dominant conifers in Japan, Atmospheric Environment, 69, 124–130, https://doi.org/10.1016/j.atmosenv.2012.12.004, 2013.
Miyama, T., Tobita, H., Uchiyama, K., Yazaki, K., Ueno, S., Saito, T., Matsumoto, A., Kitao, M., and Izuta, T.: Differences in monoterpene emission characteristics after ozone exposure between three clones representing major gene pools of Cryptomeria japonica, J. Agric. Meteorol., 74, 102–108, https://doi.org/10.2480/agrmet.D-17-00043, 2018.
Miyama, T., Tobita, H., Uchiyama, K., Yazaki, K., Ueno, S., Uemura, A., Matsumoto, A., Kitao, M., and Izuta, T.: Seasonal Changes in Interclone Variation Following Ozone Exposure on Three Major Gene Pools: An Analysis of Cryptomeria Japonica Clones, Atmosphere, 10, 643, https://doi.org/10.3390/atmos10110643, 2019.
Mochizuki, T., Endo, Y., Matsunaga, S., Chang, J., Ge, Y., Huang, C., and Tani, A.: Factors affecting monoterpene emission from Chamaecyparis obtusa, Geochem. J., 45, E15–E22, https://doi.org/10.2343/geochemj.1.0130, 2011.
Monson, R. K., Trahan, N., Rosenstiel, T. N., Veres, P., Moore, D., Wilkinson, M., Norby, R. J., Volder, A., Tjoelker, M. G., Briske, D. D., Karnosky, D. F., and Fall, R.: Isoprene emission from terrestrial ecosystems in response to global change: minding the gap between models and observations, Philos. Trans. R. Soc. Math. Phys. Eng. Sci., 365, 1677–1695, https://doi.org/10.1098/rsta.2007.2038, 2007.
Nagalingam, S., Wang, H., Kim, S., and Guenther, A.: Unexpectedly strong heat stress induction of monoterpene, methylbutenol, and other volatile emissions for conifers in the cypress family (Cupressaceae), Science of The Total Environment, 956, 177336, https://doi.org/10.1016/j.scitotenv.2024.177336, 2024.
Namdari, M., Lee, C. S., and Haghighat, F.: Active ozone removal technologies for a safe indoor environment: A comprehensive review, Building and Environment, 187, 107370, https://doi.org/10.1016/j.buildenv.2020.107370, 2021.
Núñez, L., Plaza, J., Pérez-Pastor, R., Pujadas, M., Gimeno, B. S., Bermejo, V., and García-Alonso, S.: High water vapour pressure deficit influence on Quercus ilex and Pinus pinea field monoterpene emission in the central Iberian Peninsula (Spain), Atmos. Environ., 36, 4441–4452, https://doi.org/10.1016/s1352-2310(02)00415-6, 2002.
Ogasa, M. Y., Utsumi, Y., Miki, N. H., Yazaki, K., and Fukuda, K.: Cutting stems before relaxing xylem tension induces artefacts in Vitis coignetiae, as evidenced by magnetic resonance imaging, Plant Cell Environ., 39, 329–337, https://doi.org/10.1111/pce.12617, 2016.
Okumura, M., Ise, T., Tani, A., Miyama, T., Kominami, Y., and Tohno, S.: Effect of leaf temperature and light intensity on monoterpene emissions from japanese cedar (Cryptomeria japonica), Eco-Engineering, 25, 117–121, 2013.
Ortega, J. and Helmig, D.: Approaches for quantifying reactive and low-volatility biogenic organic compound emissions by vegetation enclosure techniques – Part A, Chemosphere, 72, 343–364, https://doi.org/10.1016/j.chemosphere.2007.11.020, 2008.
Ortega, J., Helmig, D., Daly, R. W., Tanner, D. M., Guenther, A. B., and Herrick, J. D.: Approaches for quantifying reactive and low-volatility biogenic organic compound emissions by vegetation enclosure techniques – Part B: Applications, Chemosphere, 72, 365–380, https://doi.org/10.1016/j.chemosphere.2008.02.054, 2008.
Ota, Y.: Data from: Field-deployable branch enclosure system for biogenic volatile organic compounds emitted from conifers, Zenodo [data set], https://doi.org/10.5281/zenodo.14965366, 2025.
Palmer-Young, E. C., Veit, D., Gershenzon, J., and Schuman, M. C.: The sesquiterpenes(E)-β-farnesene and (E)-α-bergamotene quench ozone but fail to protect the wild tobacco Nicotiana attenuata from ozone, UVB, and drought stresses, PLoS ONE, 10, https://doi.org/10.1371/journal.pone.0127296, 2015.
Peñuelas, J. and Staudt, M.: BVOCs and global change, Trends in Plant Science, 15, 133–144, https://doi.org/10.1016/j.tplants.2009.12.005, 2010.
Praplan, A. P., Tykkä, T., Schallhart, S., Tarvainen, V., Bäck, J., and Hellén, H.: OH reactivity from the emissions of different tree species: investigating the missing reactivity in a boreal forest, Biogeosciences, 17, 4681–4705, https://doi.org/10.5194/bg-17-4681-2020, 2020.
Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S., Sherwood, S., Stevens, B., Zhang, X., Qin, D., Plattner, G., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P., Boucher, O., and Randall, D.: Clouds and Aerosols, in: Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Coordinating Lead Authors, Camb. Univ. Press, 571–658, https://doi.org/10.1017/CBO9781107415324.016, 2014.
Rotstayn, L. D., Keywood, M. D., Forgan, B. W., Gabric, A. J., Galbally, I. E., Gras, J. L., Luhar, A. K., McTainsh, G. H., Mitchell, R. M., and Young, S. A.: Possible impacts of anthropogenic and natural aerosols on Australian climate: A review, International Journal of Climatology, 29, 461–479, https://doi.org/10.1002/joc.1729, 2009.
Saito, T., Kusumoto, N., and Hiura, T.: Relation of leaf terpene contents to terpene emission profiles in Japanese cedar (Cryptomeria japonica), Ecological Research, 38, 74–82, https://doi.org/10.1111/1440-1703.12323, 2022.
Saunier, A., Mpamah, P., Biasi, C., and Blande, J. D.: Microorganisms in the phylloplane modulate the BVOC emissions of Brassica nigra leaves, Plant Signaling and Behavior, 15, 1728468, https://doi.org/10.1080/15592324.2020.1728468, 2020.
Shirota, T.: Studies on the plasticity of tree crowns based on an analysis of branch age distribution in Japanese cedar, Dissertation, Kyusyu University, 194 pp., https://hdl.handle.net/2324/456475 (last access: 27 October 2025), 2000 (in Japanese).
Stoy, P. C., Trowbridge, A. M., Siqueira, M. B., Freire, L. S., Phillips, R. P., Jacobs, L., Wiesner, S., Monson, R. K., and Novick, K. A.: Vapor pressure deficit helps explain biogenic volatile organic compound fluxes from the forest floor and canopy of a temperate deciduous forest, Oecologia, 197, 971–988, https://doi.org/10.1007/s00442-021-04891-1, 2021.
Tani, A., Masui, N., Chang, T. W., Okumura, M., and Kokubu, Y.: Basal emission rates of isoprene and monoterpenes from major tree species in Japan: interspecies and intraspecies variabilities, Progress in Earth and Planetary Science, 11, 42, https://doi.org/10.1186/s40645-024-00645-8, 2024.
Tsumura, Y.: Genetic structure and local adaptation in natural forests of Cryptomeria japonica, Ecological Research, 64–73, https://doi.org/10.1111/1440-1703.12320, 2022.
Umebayashi, T., Ogasa, M. Y., Miki, N. H., Utsumi, Y., Haishi, T., and Fukuda, K.: Freezing xylem conduits with liquid nitrogen creates artifactual embolisms in water-stressed broadleaf trees, Trees, 30, 305–316, https://doi.org/10.1007/s00468-015-1302-4, 2016.
Wang, B., Jacquin-Joly, E., and Wang, G.: The role of (e)-β-farnesene in tritrophic interactions: biosynthesis, chemoreception, and evolution, Annual Review of Entomology, 70, 313–335, https://doi.org/10.1146/annurev-ento-013024-021018, 2024.
Yañez-Serrano, A., Penuelas, J., Jorba, O., Graeffe, F., Meder, M., Garmash, O., Zhang, Y., Li, H., Luo, Y., Praplan, A., Hellen, H., Schobesberger, S., Vettikkat, L., Thomas, S., Kurtén, T., Taipale, D., Bourtsoukidis, E., Guenther, A., and Ehn, M.: Unaccounted impacts of diterpene emissions on atmospheric aerosol loadings, Research Square [preprint], https://doi.org/10.21203/rs.3.rs-5407662/v1, 13 November 2024.
Short summary
We developed a portable system to collect biogenic volatile organic compounds (BVOCs) emitted by trees, which can affect air quality and climate. Our system minimizes interference from contact with tree branches and enables sample collections from several trees in a single day. Field testing with Japanese cedar showed the system's robust performance, capturing BVOC variability and diurnal patterns, highlighting its value for advancing our understanding of BVOC dynamics in diverse ecosystems.
We developed a portable system to collect biogenic volatile organic compounds (BVOCs) emitted by...