Articles | Volume 18, issue 21
https://doi.org/10.5194/amt-18-5919-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-18-5919-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Analysis of lightning-induced currents in supply cable shields and their impact on LLS sensor site errors
OVE-ALDIS, Vienna, Austria
EPFL, EMC Laboratory, 1015 Lausanne, Switzerland
Wolfgang Schulz
OVE-ALDIS, Vienna, Austria
Farhad Rachidi
EPFL, EMC Laboratory, 1015 Lausanne, Switzerland
Naiara Duarte
CEFET-MG Department of Electrical Engineering, Belo Horizonte, Brazil
Dmitry Kuklin
NERC KSC RAS, Apatity, Russia
Related authors
Dieter Roel Poelman, Hannes Kohlmann, and Wolfgang Schulz
Nat. Hazards Earth Syst. Sci., 24, 2511–2522, https://doi.org/10.5194/nhess-24-2511-2024, https://doi.org/10.5194/nhess-24-2511-2024, 2024
Short summary
Short summary
EUCLID's lightning data unveil distinctive ground strike point (GSP) patterns in Europe. Over seas, GSPs per flash surpass inland, reaching a minimum in the Alps. Mountainous areas like the Alps and Pyrenees have the closest GSP separation, highlighting terrain elevation's impact. The daily peak current correlates with average GSPs per flash. These findings could significantly influence lightning protection measures, urging a focus on GSP density rather than flash density for risk assessment.
Dieter Roel Poelman, Hannes Kohlmann, and Wolfgang Schulz
Nat. Hazards Earth Syst. Sci., 24, 2511–2522, https://doi.org/10.5194/nhess-24-2511-2024, https://doi.org/10.5194/nhess-24-2511-2024, 2024
Short summary
Short summary
EUCLID's lightning data unveil distinctive ground strike point (GSP) patterns in Europe. Over seas, GSPs per flash surpass inland, reaching a minimum in the Alps. Mountainous areas like the Alps and Pyrenees have the closest GSP separation, highlighting terrain elevation's impact. The daily peak current correlates with average GSPs per flash. These findings could significantly influence lightning protection measures, urging a focus on GSP density rather than flash density for risk assessment.
Dieter R. Poelman, Wolfgang Schulz, Stephane Pedeboy, Dustin Hill, Marcelo Saba, Hugh Hunt, Lukas Schwalt, Christian Vergeiner, Carlos T. Mata, Carina Schumann, and Tom Warner
Nat. Hazards Earth Syst. Sci., 21, 1909–1919, https://doi.org/10.5194/nhess-21-1909-2021, https://doi.org/10.5194/nhess-21-1909-2021, 2021
Short summary
Short summary
Information about lightning properties is important in order to advance the current understanding of lightning, whereby the characteristics of ground strike points are in particular helpful to improving the risk estimation for lightning protection. High-speed video recordings of 1174 negative downward lightning flashes are taken in different regions around the world and analyzed in terms of flash multiplicity, duration, interstroke intervals and ground strike point properties.
Dieter R. Poelman, Wolfgang Schulz, Stephane Pedeboy, Leandro Z. S. Campos, Michihiro Matsui, Dustin Hill, Marcelo Saba, and Hugh Hunt
Nat. Hazards Earth Syst. Sci., 21, 1921–1933, https://doi.org/10.5194/nhess-21-1921-2021, https://doi.org/10.5194/nhess-21-1921-2021, 2021
Short summary
Short summary
The lightning flash density is a key input parameter for assessing the risk of occurrence of a lightning strike. Flashes tend to have more than one ground termination point on average; therefore the use of ground strike point densities is more appropriate. The aim of this study is to assess the ability of three distinct ground strike point algorithms to correctly determine the observed ground-truth strike points.
Cited articles
Aguet, M., Ianovici, M., and Lin, C. C.: Transient Electromagnetic Field Coupling to Long Shielded Cables, IEEE Trans. Electromagn. Compat., EMC-22, 276–282, https://doi.org/10.1109/TEMC.1980.303867, 1980.
Bridges, G. E.: Fields Generated by Bare and Insulated Cables Buried in a Lossy Halfspace, IEEE Trans. Geosci. Remote Sens., 30, 140–146, https://doi.org/10.1109/36.124224, 1992.
Bridges, G. E.: Transient Plane Wave Coupling to Bare and Insulated Cables Buried in a Lossy Half-Space, IEEE Trans. Electromagn. Compat., 37, 62–70, https://doi.org/10.1109/15.350240, 1995.
Coelho, V. L., Piantini, A., Almaguer, H. A. D., Coelho, R. A., Boaventura, W. D. C., and Paulino, J. O. S.: The influence of seasonal soil moisture on the behavior of soil resistivity and power distribution grounding systems, Electr. Power Syst. Res., 118, 76–82, https://doi.org/10.1016/j.epsr.2014.07.027, 2015.
Cooray, V., Rachidi, F., and Rubinstein, M.: Lightning Electromagnetics, Volume 1: Return stroke modelling and electromagnetic radiation, Institution of Engineering and Technology, https://doi.org/10.1049/PBPO127F, 2022.
Duarte, N. F., De Conti, A., and Alipio, R.: Assessment of Ground-Return Impedance and Admittance Equations for the Transient Analysis of Underground Cables Using a Full-Wave FDTD Method, IEEE Trans. Power Deliv., https://doi.org/10.1109/TPWRD.2021.3131415, 2021.
Grcev, L.: Modeling of Grounding Electrodes Under Lightning Currents, Electromagn. Compat. IEEE Trans., 51, 559–571, https://doi.org/10.1109/TEMC.2009.2025771, 2009.
ITU, R.: World atlas of ground conductivities, Itu-R P.832-2, 1, 51, 2015.
Kohlmann, H., Schulz, W., and Rachidi, F.: Evaluation of Site Errors in LLS Magnetic Direction Finding Caused By Large Hills Using the 3D-FDTD Technique, Earth Sp. Sci., https://doi.org/10.1029/2021ea001914, 2021.
Kuklin, D.: Elecode, GitLab [code], https://gitlab.com/dmika/elecode (last access: 29 October 2025), 2021.
Kuklin, D.: Open-source software for electrical engineering applications requiring consideration of electrodynamics: elecode, arXiv [preprint], https://doi.org/10.48550/arXiv.2207.06908, 15 July 2022.
Loke, M.: Electrical imaging surveys for environmental and engineering studies – A practical guide to 2D and 3D surveys, https://pages.mtu.edu/~ctyoung/LOKENOTE.PDF (last access: 29 October 2025), 2001.
NanoComp: MEEP, GitHub [code], https://github.com/NanoComp/meep, last access: 29 October 2025.
Norton, K. A.: The Propagation of Radio Waves Over the Surface of the Earth and in the Upper Atmosphere, Proc. Inst. Radio Eng., 25, 1203–1236, https://doi.org/10.1109/JRPROC.1937.228544, 1937.
Nucci, C. A., Mazzetti, G., Rachidi, F., and Ianoz, M. V: On lightning return stroke models for “LEMP” calculations, in: 19th International Conference on Lightning Protection (ICLP), 1988.
Oskooi, A., Roundy, D., Ibanescu, M., Bermel, P., Joannopoulos, J. D., and Johnson, S. G.: Meep: A flexible free-software package for electromagnetic simulations by the FDTD method, Comput. Phys. Commun., 181, 687–702, https://doi.org/10.1016/j.cpc.2009.11.008, 2010.
Paolone, M., Petrache, E., Rachidi, F., Nucci, C. A., Rakov, V. A., Uman, M. A., Jordan, D. M., Rambo, K. J., Jerauld, J. E., Nyffeler, M., and Schoene, J.: Lightning induced disturbances in buried cables – part II: experiment and model validation, Electromagn. Compat. IEEE Trans., 47, 509–520, https://doi.org/10.1109/TEMC.2005.853163, 2005.
Petrache, E., Rachidi, F., Paolone, M., Nucci, C. A., Rakov, V. A., and Uman, M. A.: Lightning induced disturbances in buried Cables – part I: theory, Electromagn. Compat. IEEE Trans., 47, 498–508, https://doi.org/10.1109/TEMC.2005.853161, 2005.
Rachidi, F. and Nucci, C. A.: On the Master, Uman, Lin, Standler and the Modified Transmission Line Lightning return stroke current models, J. Geophys. Res. Atmos., 95, 20389–20393, https://doi.org/10.1029/JD095iD12p20389, 1990.
Rachidi, F., Janischewskyj, W., Hussein, A. M., Nucci, C. A., Guerrieri, S., Kordi, B., and Chang, J.-S.: Current and electromagnetic field associated with lightning-return strokes to tall towers, Electromagn. Compat. IEEE Trans., 43, 356–367, https://doi.org/10.1109/15.942607, 2001.
Rizki Ramdhani, M., Ruhimat, A., Barnes, A., Kunci, K., Resistivity Tomography, E., and Selatan, S.: Imaging Tropical Peatland And Aquifer Potential in South Sumatera Using Electrical Resistivity Tomography, Indones. J. For. Res., 7, 1–14, https://doi.org/10.59465/IJFR.2020.7.1.1-14, 2020.
Rubinstein, M.: An approximate formula for the calculation of the horizontal electric field from lightning at close, intermediate, and long range, Electromagn. Compat. IEEE Trans., 38, 531–535, https://doi.org/10.1109/15.536087, 1996.
Schulz, W.: Performance Evaluation of Lightning Location Systems, PhD thesis, Technical University of Vienna, 1997.
Schulz, W. and Diendorfer, G.: Amplitude site error of magnetic direction finder, in: 26th International Conference on Lightning Protection (ICLP), 4–7, https://www.aldis.at/fileadmin/userdaten/aldis/publication/2002/3_ICLP2002_Schulz.pdf (last access: 29 October 2025), 2002.
Schulz, W., Diendorfer, G., Hofbauer, F., Stimmer, A., and Mair, M.: Site Errors in Magnetic Direction Finding due to Buried Cables, in: 24th International Conference on Lightning Protection (ICLP), https://www.aldis.at/fileadmin/userdaten/aldis/publication/1998/5_ICLP1998_Schulz.pdf (last access: 29 October 2025), 1998.
Schulz, W., Diendorfer, G., Pedeboy, S., and Poelman, D. R.: The European lightning location system EUCLID – Part 1: Performance analysis and validation, Nat. Hazards Earth Syst. Sci., 16, 595–605, https://doi.org/10.5194/nhess-16-595-2016, 2016.
Shoory, A., Mimouni, A., Rachidi, F., Cooray, V., Moini, R., and Sadeghi, S. H. H.: Validity of Simplified Approaches for the Evaluation of Lightning Electromagnetic Fields Above a Horizontally Stratified Ground, Electromagn. Compat. IEEE Trans., 52, 657–663, https://doi.org/10.1109/TEMC.2010.2045229, 2010.
Tesche, F. M., Ianoz, M., and Karlsson, T.: EMC analysis methods and computational models, John Wiley & Sons, 623 pp., ISBN-10: 047115573X, ISBN-13: 978-0471155737, 1997.
Theethayi, N. and Thottappillil, R.: On Reducing the Lightning Transients in Buried Shielded Cables Using Follow-On Earth Wire, Electromagn. Compat. IEEE Trans., 49, 924–927, https://doi.org/10.1109/TEMC.2007.908259, 2007.
Theethayi, N., Thottappillil, R., Paolone, M., Nucci, C. A., and Rachidi, F.: External impedance and admittance of buried horizontal wires for transient studies using transmission line analysis, IEEE Trans. Dielectr. Electr. Insul., 14, 751–761, https://doi.org/10.1109/TDEI.2007.369540, 2007.
Thottappillil, R., Rakov, V. A., and Uman, M. A.: Distribution of charge along the lightning channel: Relation to remote electric and magnetic fields and to return-stroke models, J. Geophys. Res. Atmos., 102, 6987–7006, https://doi.org/10.1029/96JD03344, 1997.
Visacro, S. F. and Alipio, R.: Frequency Dependence of Soil Parameters: Experimental Results, Predicting Formula and Influence on the Lightning Response of Grounding Electrodes, Power Deliv. IEEE Trans., 27, 927–935, https://doi.org/10.1109/TPWRD.2011.2179070, 2012.
Wait, J.: Radiation from a vertical electric dipole over a stratified ground, Trans. IRE Prof. Gr. Antennas Propag., 1, 9–11, https://doi.org/10.1109/T-AP.1953.27320, 1953.
Wait, J. R.: Electromagnetic Waves in Stratified Media, Elsevier, https://doi.org/10.1016/c2013-0-05239-5, 1970.
Short summary
Ground-based lightning location system (LLS) networks employ LLS sensors that estimate the direction of the magnetic field vector of incident lightning electromagnetic fields. This work demonstrates how field-to-cable coupling induces currents on the LLS sensor power supply cable shield, which are responsible for spurious (scattered) magnetic fields and, thus, cause errors in the estimation of the incident angle and amplitude, called "sensor site errors".
Ground-based lightning location system (LLS) networks employ LLS sensors that estimate the...