Articles | Volume 18, issue 21
https://doi.org/10.5194/amt-18-6345-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-18-6345-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A new approach to characterizing medium-scale gravity waves using Antarctic airglow observations
Gabriel Augusto Giongo
CORRESPONDING AUTHOR
Space Weather Division, National Institute for Space Research, São José dos Campos, SP, Brazil
Cristiano Max Wrasse
Space Weather Division, National Institute for Space Research, São José dos Campos, SP, Brazil
Pierre-Dominique Pautet
Physics Department, Utah State University, Logan, UT, USA
José Valentin Bageston
Southern Space Coordination, National Institute for Space Research, Santa Maria, RS, Brazil
Prosper Kwamla Nyassor
Space Weather Division, National Institute for Space Research, São José dos Campos, SP, Brazil
Cosme Alexandre Oliveira Barros Figueiredo
Physics Department, Federal University of Campina Grande, Campina Grande, PB, Brazil
Anderson Vestena Bilibio
Space Weather Division, National Institute for Space Research, São José dos Campos, SP, Brazil
Delano Gobbi
Space Weather Division, National Institute for Space Research, São José dos Campos, SP, Brazil
Hisao Takahashi
Space Weather Division, National Institute for Space Research, São José dos Campos, SP, Brazil
Related authors
Gabriel Augusto Giongo, Cristiano Max Wrasse, Pierre-Dominique Pautet, José Valentin Bageston, Prosper Kwamla Nyassor, Cosme Alexandre Oliveira Barros Figueiredo, Anderson Vestena Bilibio, Tracy Moffat-Griffin, Damian John Murphy, Toyese Tunde Ayorinde, Delano Gobbi, and Hisao Takahashi
EGUsphere, https://doi.org/10.5194/egusphere-2025-3114, https://doi.org/10.5194/egusphere-2025-3114, 2025
Short summary
Short summary
This work analyzes the medium-scale atmospheric gravity waves observed by ground-based airglow imaging over the Antarctic continent. Medium-scale gravity waves refer to waves larger than 50 km of horizontal wavelength, and have not been analyzed in that region so far. Wave parameters and horizontal propagation characteristics were obtained by a recently improved methodology and are described thoroughly.
Prosper K. Nyassor, Cristiano M. Wrasse, Igo Paulino, Erdal Yiğit, Vera Y. Tsali-Brown, Ricardo A. Buriti, Cosme A. O. B. Figueiredo, Gabriel A. Giongo, Fábio Egito, Oluwasegun M. Adebayo, Hisao Takahashi, and Delano Gobbi
Atmos. Chem. Phys., 25, 4053–4082, https://doi.org/10.5194/acp-25-4053-2025, https://doi.org/10.5194/acp-25-4053-2025, 2025
Short summary
Short summary
This work explores the dynamics of the momentum and energy of propagating mesospheric gravity waves (GWs). A photometer was used to observe the vertical component of the GWs, whereas the horizontal component was observed by an all-sky imager. Using the parameters from these two instruments and background wind from meteor radar, the momentum flux and potential energy of the GWs were determined and studied. It is noted that the dynamics of the downward-propagating GWs were controlled by observed ducts.
Toyese Tunde Ayorinde, Cristiano Max Wrasse, Hisao Takahashi, Luiz Fernando Sapucci, Mohamadou A. Diallo, Cosme Alexandre Oliveira Barros Figueiredo, Diego Barros, Ligia Alves da Silva, Patrick Essien, and Anderson Vestena Bilibio
Atmos. Chem. Phys., 25, 12357–12378, https://doi.org/10.5194/acp-25-12357-2025, https://doi.org/10.5194/acp-25-12357-2025, 2025
Short summary
Short summary
We studied how the Intertropical Convergence Zone (ITCZ) interacts with atmospheric gravity waves high in the sky and how global climate patterns like El Niño affect them. Using RO, ERA5, and NCEP reanalysis data, we found that the ITCZ shifts with season but stays strong year-round, influencing weather and energy flow. Our findings show how climate patterns shape weather systems and help predict changes, improving understanding of the atmosphere and its effects on global climate.
Qinzeng Li, Jiyao Xu, Yajun Zhu, Cristiano M. Wrasse, José V. Bageston, Wei Yuan, Xiao Liu, Weijun Liu, Ying Wen, Hui Li, and Zhengkuan Liu
Atmos. Chem. Phys., 25, 9719–9736, https://doi.org/10.5194/acp-25-9719-2025, https://doi.org/10.5194/acp-25-9719-2025, 2025
Short summary
Short summary
This study explores intense concentric gravity waves (CGWs) based on ground-based and multi-satellite observations over southern Brazil, revealing significant airglow perturbations and strong momentum release. Triggered by deep convection and enabled by weaker wind fields, these CGWs reached the mesopause and thermosphere. Consistent detection via OI and OH airglow emissions confirms their vertical propagation, while asymmetric thermosphere propagation is linked to Doppler-induced wavelength changes.
Gabriel Augusto Giongo, Cristiano Max Wrasse, Pierre-Dominique Pautet, José Valentin Bageston, Prosper Kwamla Nyassor, Cosme Alexandre Oliveira Barros Figueiredo, Anderson Vestena Bilibio, Tracy Moffat-Griffin, Damian John Murphy, Toyese Tunde Ayorinde, Delano Gobbi, and Hisao Takahashi
EGUsphere, https://doi.org/10.5194/egusphere-2025-3114, https://doi.org/10.5194/egusphere-2025-3114, 2025
Short summary
Short summary
This work analyzes the medium-scale atmospheric gravity waves observed by ground-based airglow imaging over the Antarctic continent. Medium-scale gravity waves refer to waves larger than 50 km of horizontal wavelength, and have not been analyzed in that region so far. Wave parameters and horizontal propagation characteristics were obtained by a recently improved methodology and are described thoroughly.
Prosper K. Nyassor, Cristiano M. Wrasse, Igo Paulino, Erdal Yiğit, Vera Y. Tsali-Brown, Ricardo A. Buriti, Cosme A. O. B. Figueiredo, Gabriel A. Giongo, Fábio Egito, Oluwasegun M. Adebayo, Hisao Takahashi, and Delano Gobbi
Atmos. Chem. Phys., 25, 4053–4082, https://doi.org/10.5194/acp-25-4053-2025, https://doi.org/10.5194/acp-25-4053-2025, 2025
Short summary
Short summary
This work explores the dynamics of the momentum and energy of propagating mesospheric gravity waves (GWs). A photometer was used to observe the vertical component of the GWs, whereas the horizontal component was observed by an all-sky imager. Using the parameters from these two instruments and background wind from meteor radar, the momentum flux and potential energy of the GWs were determined and studied. It is noted that the dynamics of the downward-propagating GWs were controlled by observed ducts.
Gabriela Dornelles Bittencourt, Hassan Bencherif, Damaris Kirsch Pinheiro, Nelson Begue, Lucas Vaz Peres, José Valentin Bageston, Douglas Lima de Bem, Francisco Raimundo da Silva, and Tristan Millet
Atmos. Meas. Tech., 17, 5201–5220, https://doi.org/10.5194/amt-17-5201-2024, https://doi.org/10.5194/amt-17-5201-2024, 2024
Short summary
Short summary
The study examines the behavior of ozone at equatorial and subtropical latitudes in South America, in a multi-instrumental analysis. The methodology applied used ozonesondes (SHADOZ/NASA) and satellite data (TIMED/SABER), as well as analysis with ground-based and satellite instruments, allowing a more in-depth study at both latitudes. The main motivation is to understand how latitudinal differences in the observation of ozone content can interfere with the behavior of this trace gas.
Cristiano M. Wrasse, Prosper K. Nyassor, Ligia A. da Silva, Cosme A. O. B. Figueiredo, José V. Bageston, Kleber P. Naccarato, Diego Barros, Hisao Takahashi, and Delano Gobbi
Atmos. Chem. Phys., 24, 5405–5431, https://doi.org/10.5194/acp-24-5405-2024, https://doi.org/10.5194/acp-24-5405-2024, 2024
Short summary
Short summary
This present work investigates the propagation dynamics and the sources–source mechanisms of quasi-monochromatic gravity waves (QMGWs) observed between April 2017 and April 2022 at São Martinho da Serra. The QMGW parameters were estimated using a 2D spectral analysis, and their source locations were identified using a backward ray-tracing model. Furthermore, the propagation conditions, sources, and source mechanisms of the QMGWs were extensively studied.
Gabriela Dornelles Bittencourt, Damaris Kirsch Pinheiro, Hassan Bencherif, Lucas Vaz Peres, Nelson Begue, José Valentin Bageston, Douglas Lima de Bem, Vagner Anabor, and Luiz Angelo Steffenel
EGUsphere, https://doi.org/10.5194/egusphere-2023-1471, https://doi.org/10.5194/egusphere-2023-1471, 2023
Preprint archived
Short summary
Short summary
The study examines ozone depletions at mid-latitudes in Brazil during austral spring Antarctic Ozone Hole influence events. The methodology applied used data from the total column ozone, vertical profile of the atmosphere, and reanalysis data to analyze the atmospheric dynamics. The main motivation of this work is to show how this important trace gas dynamically behaves in the atmosphere in the active period of the Antarctic Ozone Hole in regions of medium latitudes.
Hisao Takahashi, Cosme A. O. B. Figueiredo, Patrick Essien, Cristiano M. Wrasse, Diego Barros, Prosper K. Nyassor, Igo Paulino, Fabio Egito, Geangelo M. Rosa, and Antonio H. R. Sampaio
Ann. Geophys., 40, 665–672, https://doi.org/10.5194/angeo-40-665-2022, https://doi.org/10.5194/angeo-40-665-2022, 2022
Short summary
Short summary
We observed two different wave propagations in the earth’s upper atmosphere: a gravity wave in the mesosphere and the ionospheric disturbances. We investigated the wave propagations by using airglow imaging techniques. It is found that there was a gravity wave generation from the tropospheric convection spot, and it propagated upward in the ionosphere. This reports observational evidence of gravity wave propagation from the troposphere to ionosphere.
Prosper K. Nyassor, Cristiano M. Wrasse, Igo Paulino, Eliah F. M. T. São Sabbas, José V. Bageston, Kleber P. Naccarato, Delano Gobbi, Cosme A. O. B. Figueiredo, Toyese T. Ayorinde, Hisao Takahashi, and Diego Barros
Atmos. Chem. Phys., 22, 15153–15177, https://doi.org/10.5194/acp-22-15153-2022, https://doi.org/10.5194/acp-22-15153-2022, 2022
Short summary
Short summary
This work investigates the sources of concentric gravity waves (CGWs) excited by a moving system of clouds with several overshooting regions on 1–2 October 2019 at São Martinho da Serra. The parameters of these waves were estimated using 2D spectral analysis and their source locations identified using backward ray tracing. Furthermore, the sources of these waves were properly identified by tracking the individual overshooting regions in space and time since the system of clouds was moving.
Igo Paulino, Ana Roberta Paulino, Amauri F. Medeiros, Cristiano M. Wrasse, Ricardo Arlen Buriti, and Hisao Takahashi
Ann. Geophys., 39, 1005–1012, https://doi.org/10.5194/angeo-39-1005-2021, https://doi.org/10.5194/angeo-39-1005-2021, 2021
Short summary
Short summary
In the present work, the lunar semidiurnal tide (M2) was investigated in the equatorial plasma bubble (EPB) zonal drifts over Brazil from 2000 to 2007. On average, the M2 contributes 5.6 % to the variability of the EPB zonal drifts. A strong seasonal and solar cycle dependency was also observed, the amplitudes of the M2 being stronger during the summer and high solar activity periods.
Ana Roberta Paulino, Fabiano da Silva Araújo, Igo Paulino, Cristiano Max Wrasse, Lourivaldo Mota Lima, Paulo Prado Batista, and Inez Staciarini Batista
Ann. Geophys., 39, 151–164, https://doi.org/10.5194/angeo-39-151-2021, https://doi.org/10.5194/angeo-39-151-2021, 2021
Short summary
Short summary
Long- and short-period oscillations in the lunar semidiurnal tidal amplitudes in the ionosphere derived from the total electron content were investigated over Brazil from 2011 to 2014. The results showed annual, semiannual and triannual oscillations as the dominant components. Additionally, the most pronounced short-period oscillations were observed between 7 and 11 d, which suggest a possible coupling of the lunar tide and planetary waves.
Cited articles
Alexander, M. J. and Barnet, C.: Using Satellite Observations to Constrain Parameterizations of Gravity Wave Effects for Global Models, J. Atmos. Sci., 64, 1652–1665, https://doi.org/10.1175/JAS3897.1, 2007. a
Alexander, P., Luna, D., de la Torre, A., and Schmidt, T.: Distribution functions and statistical parameters that may be used to characterize limb sounders gravity wave climatologies in the stratosphere, Adv. Space Res., 56, 619–633, https://doi.org/10.1016/j.asr.2015.05.007, 2015. a
Alexander, S. P., Klekociuk, A. R., and Tsuda, T.: Gravity wave and orographic wave activity observed around the Antarctic and Arctic stratospheric vortices by the COSMIC GPS-RO satellite constellation, J. Geophys. Res.-Atmos., 114, D17103, https://doi.org/10.1029/2009JD011851, 2009. a
Bageston, J. V., Wrasse, C. M., Gobbi, D., Takahashi, H., and Souza, P. B.: Observation of mesospheric gravity waves at Comandante Ferraz Antarctica Station (62° S), Ann. Geophys., 27, 2593–2598, https://doi.org/10.5194/angeo-27-2593-2009, 2009. a, b
Beldon, C. and Mitchell, N.: Gravity waves in the mesopause region observed by meteor radar, 2: Climatologies of gravity waves in the Antarctic and Arctic, J. Atmos. Sol.-Terr. Phy., 71, 875–884, https://doi.org/10.1016/j.jastp.2009.03.009, 2009. a
Bilibio, A. V.: ONDAS DE GRAVIDADE DE MÉDIA ESCALA OBSERVADAS NA AEROLUMINESCÊNCIA NOTURNA SOBRE CACHOEIRA PAULISTA, Dissertação de Mestrado do Curso de Pós-Graduação em Geofísica Espacial, Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, http://urlib.net/sid.inpe.br/mtc-m21b/2017/09.05.19.35 (last access: 4 November 2025), 2017. a
Ern, M., Preusse, P., Alexander, M. J., and Warner, C. D.: Absolute values of gravity wave momentum flux derived from satellite data, J. Geophys. Res.-Atmos., 109, D20103, https://doi.org/10.1029/2004JD004752, 2004. a
Essien, P., Paulino, I., Wrasse, C. M., Campos, J. A. V., Paulino, A. R., Medeiros, A. F., Buriti, R. A., Takahashi, H., Agyei-Yeboah, E., and Lins, A. N.: Seasonal characteristics of small- and medium-scale gravity waves in the mesosphere and lower thermosphere over the Brazilian equatorial region, Ann. Geophys., 36, 899–914, https://doi.org/10.5194/angeo-36-899-2018, 2018. a, b, c
Figueiredo, C. A. O. B., Takahashi, H., Wrasse, C. M., Otsuka, Y., Shiokawa, K., and Barros, D.: Medium-Scale Traveling Ionospheric Disturbances Observed by Detrended Total Electron Content Maps Over Brazil, J. Geophys. Res.-Space, 123, 2215–2227, https://doi.org/10.1002/2017JA025021, 2018. a, b, c
Fritts, D. C. and Alexander, M. J.: Gravity wave dynamics and effects in the middle atmosphere, Rev. Geophys., 41, 1003, https://doi.org/10.1029/2001RG000106, 2003. a
Garcia, F. J., Taylor, M. J., and Kelley, M. C.: Two-dimensional spectral analysis of mesospheric airglow image data, Appl. Optics, 36, 7374–7385, https://doi.org/10.1364/AO.36.007374, 1997. a, b
Giongo, G. A., Bageston, J. V., Batista, P. P., Wrasse, C. M., Bittencourt, G. D., Paulino, I., Paes Leme, N. M., Fritts, D. C., Janches, D., Hocking, W., and Schuch, N. J.: Mesospheric front observations by the OH airglow imager carried out at Ferraz Station on King George Island, Antarctic Peninsula, in 2011, Ann. Geophys., 36, 253–264, https://doi.org/10.5194/angeo-36-253-2018, 2018. a
Giongo, G. A., Bageston, J. V., Figueiredo, C. A. O. B., Wrasse, C. M., Kam, H., Kim, Y. H., and Schuch, N. J.: Gravity Wave Investigations over Comandante Ferraz Antarctic Station in 2017: General Characteristics, Wind Filtering and Case Study, Atmosphere, 11, 880, https://doi.org/10.3390/atmos11080880, 2020. a, b, c
Hindley, N. P., Wright, C. J., Smith, N. D., and Mitchell, N. J.: The southern stratospheric gravity wave hot spot: individual waves and their momentum fluxes measured by COSMIC GPS-RO, Atmos. Chem. Phys., 15, 7797–7818, https://doi.org/10.5194/acp-15-7797-2015, 2015. a
Hindley, N. P., Wright, C. J., Smith, N. D., Hoffmann, L., Holt, L. A., Alexander, M. J., Moffat-Griffin, T., and Mitchell, N. J.: Gravity waves in the winter stratosphere over the Southern Ocean: high-resolution satellite observations and 3-D spectral analysis, Atmos. Chem. Phys., 19, 15377–15414, https://doi.org/10.5194/acp-19-15377-2019, 2019. a
Hoffmann, L., Xue, X., and Alexander, M. J.: A global view of stratospheric gravity wave hotspots located with Atmospheric Infrared Sounder observations, J. Geophys. Res.-Atmos., 118, 416–434, https://doi.org/10.1029/2012JD018658, 2013. a
Kam, H., Jee, G., Kim, Y., Ham, Y.-b., and Song, I.-S.: Statistical analysis of mesospheric gravity waves over King Sejong Station, Antarctica (62.2° S, 58.8° W), J. Atmos. Sol.-Terr. Phy., 155, 86–94, https://doi.org/10.1016/j.jastp.2017.02.006, 2017. a
Kam, H., Song, I.-S., Kim, J.-H., Kim, Y. H., Song, B.-G., Nakamura, T., Tomikawa, Y., Kogure, M., Ejiri, M. K., Perwitasari, S., Tsutsumi, M., and Kwak, Y.-S.: Mesospheric Short-Period Gravity Waves in the Antarctic Peninsula Observed in All-Sky Airglow Images and Their Possible Source Locations, J. Geophys. Res.-Atmos., 126, e2021JD035842, https://doi.org/10.1029/2021JD035842, 2021. a
KEO SCIENTIFIC LTD: Keo Sentry Imagers for Airglow Research, http://www.keoscientific.com/aeronomy-imagers.php (last access: 15 November 2022), 2022. a
Kogure, M., Nakamura, T., Ejiri, M. K., Nishiyama, T., Tomikawa, Y., and Tsutsumi, M.: Effects of Horizontal Wind Structure on a Gravity Wave Event in the Middle Atmosphere Over Syowa (69° S, 40° E), the Antarctic, Geophys. Res. Lett., 45, 5151–5157, https://doi.org/10.1029/2018GL078264, 2018. a
Kubota, M., Fukunishi, H., and Okano, S.: Characteristics of medium- and large-scale TIDs over Japan derived from OI 630-nm nightglow observation, Earth Planets Space, 53, 741–751, https://doi.org/10.1186/BF03352402, 2001. a
Lehner, M. and Rotach, M. W.: Current Challenges in Understanding and Predicting Transport and Exchange in the Atmosphere over Mountainous Terrain, Atmosphere, 9, 276, https://doi.org/10.3390/atmos9070276, 2018. a
Liu, Y., San Liang, X., and Weisberg, R. H.: Rectification of the Bias in the Wavelet Power Spectrum, J. Atmos. Ocean. Tech., 24, 2093–2102, https://doi.org/10.1175/2007JTECHO511.1, 2007. a, b
Lu, X., Chu, X., Fong, W., Chen, C., Yu, Z., Roberts, B. R., and McDonald, A. J.: Vertical evolution of potential energy density and vertical wave number spectrum of Antarctic gravity waves from 35 to 105 km at McMurdo (77.8° S, 166.7° E), J. Geophys. Res.-Atmos., 120, 2719–2737, https://doi.org/10.1002/2014JD022751, 2015. a
Matsuda, T. S., Nakamura, T., Ejiri, M. K., Tsutsumi, M., Tomikawa, Y., Taylor, M. J., Zhao, Y., Pautet, P., Murphy, D. J., and Moffat‐Griffin, T.: Characteristics of mesospheric gravity waves over Antarctica observed by Antarctic Gravity Wave Instrument Network imagers using 3-D spectral analyses, J. Geophys. Res.-Atmos., 122, 8969–8981, https://doi.org/10.1002/2016JD026217, 2017. a
Medeiros, A. F., Taylor, M. J., Takahashi, H., Batista, P. P., and Gobbi, D.: An investigation of gravity wave activity in the low-latitude upper mesosphere: Propagation direction and wind filtering, J. Geophys. Res.-Atmos., 108, 4411, https://doi.org/10.1029/2002JD002593, 2003. a
Moffat-Griffin, T., Hibbins, R. E., Jarvis, M. J., and Colwell, S. R.: Seasonal variations of gravity wave activity in the lower stratosphere over an Antarctic Peninsula station, J. Geophys. Res., 116, D14111, https://doi.org/10.1029/2010JD015349, 2011. a
Moffat‐Griffin, T. and Colwell, S. R.: The characteristics of the lower stratospheric gravity wavefield above Halley (75° S, 26° W), Antarctica, from radiosonde observations, J. Geophys. Res.-Atmos., 122, 8998–9010, https://doi.org/10.1002/2017JD027079, 2017. a
Nakamura, T., Higashikawa, A., Tsuda, T., and Matsushita, Y.: Seasonal variations of gravity wave structures in OH airglow with a CCD imager at Shigaraki, Earth Planets and Space, 51, 897–906, https://doi.org/10.1186/BF03353248, 1999. a
Nappo, C. J.: An Introduction to Atmospheric Gravity Waves, in: International Geophysics, Academic Press, Vol. 85, ISBN 978-0-12-514082-9, 2002. a
Nielsen, K., Taylor, M., Hibbins, R., and Jarvis, M.: Climatology of short-period mesospheric gravity waves over Halley, Antarctica (76° S, 27° W), J. Atmos. Sol.-Terr. Phy., 71, 991–1000, https://doi.org/10.1016/j.jastp.2009.04.005, 2009. a
Nyassor, P. K., Wrasse, C. M., Paulino, I., Yiğit, E., Tsali-Brown, V. Y., Buriti, R. A., Figueiredo, C. A. O. B., Giongo, G. A., Egito, F., Adebayo, O. M., Takahashi, H., and Gobbi, D.: Momentum flux characteristics of vertically propagating gravity waves, Atmos. Chem. Phys., 25, 4053–4082, https://doi.org/10.5194/acp-25-4053-2025, 2025. a, b
Paulino, I., Takahashi, H., Medeiros, A. F., Wrasse, C. M., Buriti, R. A., Sobral, J. H. A., and Gobbi, D.: Mesospheric gravity waves and ionospheric plasma bubbles observed during the COPEX campaign, J. Atmos. Sol.-Terr. Phy., 73, 1575–1580, https://doi.org/10.1016/j.jastp.2010.12.004, 2011. a
Perwitasari, S., Nakamura, T., Kogure, M., Tomikawa, Y., Ejiri, M. K., and Shiokawa, K.: Comparison of gravity wave propagation directions observed by mesospheric airglow imaging at three different latitudes using the M-transform, Ann. Geophys., 36, 1597–1605, https://doi.org/10.5194/angeo-36-1597-2018, 2018. a
Plougonven, R., Hertzog, A., and Guez, L.: Gravity waves over Antarctica and the Southern Ocean: consistent momentum fluxes in mesoscale simulations and stratospheric balloon observations, Q. J. Roy. Meteor. Soc., 139, 101–118, https://doi.org/10.1002/qj.1965, 2013. a
Plougonven, R., Jewtoukoff, V., Cámara, A. d. l., Lott, F., and Hertzog, A.: On the Relation between Gravity Waves and Wind Speed in the Lower Stratosphere over the Southern Ocean, J. Atmos. Sci., 74, 1075–1093, https://doi.org/10.1175/JAS-D-16-0096.1, 2017. a
Song, B., Song, I., Chun, H., Lee, C., Kam, H., Kim, Y. H., Kang, M., Hindley, N. P., and Mitchell, N. J.: Activities of small-scale gravity waves in the upper mesosphere observed from meteor radar at King Sejong Station, Antarctica (62.22° S, 58.78° W) and their potential sources, J. Geophys. Res.-Atmos., 126, e2021JD034528, https://doi.org/10.1029/2021JD034528, 2021. a
Swenson, G. R. and Mende, S. B.: OH emission and gravity waves (including a breaking wave) in all‐sky imagery from Bear Lake, UT, Geophys. Res. Lett., 21, 2239–2242, https://doi.org/10.1029/94GL02112, 1994. a
Takahashi, H., Wrasse, C. M., Figueiredo, C. A. O. B., Barros, D., Paulino, I., Essien, P., Abdu, M. A., Otsuka, Y., and Shiokawa, K.: Equatorial Plasma Bubble Occurrence Under Propagation of MSTID and MLT Gravity Waves, J. Geophys. Res.-Space, 125, e2019JA027566, https://doi.org/10.1029/2019JA027566, 2020. a
Tang, J., Kamalabadi, F., Franke, S., Liu, A., and Swenson, G.: Estimation of gravity wave momentum flux with spectroscopic imaging, IEEE T. Geosci. Remote, 43, 103–109, https://doi.org/10.1109/TGRS.2004.836268, 2005. a, b
Taylor, M. J., Pendleton Jr., W. R., Pautet, P.-D., Zhao, Y., Olsen, C., Badu, H. K. S., Medeiros, A. F., and Takahashi, H.: RECENT PROGRESS IN MESOSPHERIC GRAVITY WAVE STUDIES USING NIGTHGLOW IMAGING SYSTEM, Brazilian Journal of Geophysics, 25, 49–58, https://www.sbgf.org.br/revista/index.php/rbgf/article/view/1710 (last access: 4 November 2025), 2007. a
Taylor, M. J., Pautet, P.-D., Medeiros, A. F., Buriti, R., Fechine, J., Fritts, D. C., Vadas, S. L., Takahashi, H., and São Sabbas, F. T.: Characteristics of mesospheric gravity waves near the magnetic equator, Brazil, during the SpreadFEx campaign, Ann. Geophys., 27, 461–472, https://doi.org/10.5194/angeo-27-461-2009, 2009. a, b, c
Torrence, C. and Compo, G. P.: A Practical Guide to Wavelet Analysis, B. Am. Meteorol. Soc., 79, 61–78, https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2, 1998. a, b, c
Vadas, S. L., Xu, S., Yue, J., Bossert, K., Becker, E., and Baumgarten, G.: Characteristics of the quiet-time hot spot gravity waves observed by GOCE over the Southern Andes on 5 July 2010, J. Geophys. Res.-Space, 124, 7034–7061, https://doi.org/10.1029/2019JA026693, 2019. a
Vargas, F., Chau, J. L., Charuvil Asokan, H., and Gerding, M.: Mesospheric gravity wave activity estimated via airglow imagery, multistatic meteor radar, and SABER data taken during the SIMONe–2018 campaign, Atmos. Chem. Phys., 21, 13631–13654, https://doi.org/10.5194/acp-21-13631-2021, 2021. a, b
Vosper, S. B., Ross, A. N., Renfrew, I. A., Sheridan, P., Elvidge, A. D., and Grubisic, V.: Current Challenges in Orographic Flow Dynamics: Turbulent Exchange Due to Low-Level Gravity-Wave Processes, Atmosphere, 9, 361, https://doi.org/10.3390/atmos9090361, 2018. a
Wrasse, C. M., Takahashi, H., de Medeiros, A. F., Lima, L. M., Taylor, M. J., Gobbi, D., and Fechine, J.: Determinação dos parâmetros de ondas de gravidade através da análise espectral de imagens de aeroluminescência, Brazilian Journal of Geophysics, 25, 257–265, https://sbgf.org.br/revista/index.php/rbgf/article/view/1675 (last access: 4 November 2025), 2007. a, b
Wrasse, C. M., Nyassor, P. K., da Silva, L. A., Figueiredo, C. A. O. B., Bageston, J. V., Naccarato, K. P., Barros, D., Takahashi, H., and Gobbi, D.: Studies on the propagation dynamics and source mechanism of quasi-monochromatic gravity waves observed over São Martinho da Serra (29° S, 53° W), Brazil, Atmos. Chem. Phys., 24, 5405–5431, https://doi.org/10.5194/acp-24-5405-2024, 2024. a
Wright, C. J., Hindley, N. P., Moss, A. C., and Mitchell, N. J.: Multi-instrument gravity-wave measurements over Tierra del Fuego and the Drake Passage – Part 1: Potential energies and vertical wavelengths from AIRS, COSMIC, HIRDLS, MLS-Aura, SAAMER, SABER and radiosondes, Atmos. Meas. Tech., 9, 877–908, https://doi.org/10.5194/amt-9-877-2016, 2016. a
Wright, C. J., Hindley, N. P., Hoffmann, L., Alexander, M. J., and Mitchell, N. J.: Exploring gravity wave characteristics in 3-D using a novel S-transform technique: AIRS/Aqua measurements over the Southern Andes and Drake Passage, Atmos. Chem. Phys., 17, 8553–8575, https://doi.org/10.5194/acp-17-8553-2017, 2017. a
Wright, C. J., Hindley, N. P., Alexander, M. J., Holt, L. A., and Hoffmann, L.: Using vertical phase differences to better resolve 3D gravity wave structure, Atmos. Meas. Tech., 14, 5873–5886, https://doi.org/10.5194/amt-14-5873-2021, 2021. a
Wu, Q., Chen, Z., Mitchell, N., Fritts, D., and Iimura, H.: Mesospheric wind disturbances due to gravity waves near the Antarctica Peninsula, J. Geophys. Res.-Atmos., 118, 7765–7772, https://doi.org/10.1002/jgrd.50577, 2013. a
Xu, S., Vadas, S. L., and Yue, J.: Quiet Time Thermospheric Gravity Waves Observed by GOCE and CHAMP, J. Geophys. Res.-Space, 129, e2023JA032078, https://doi.org/10.1029/2023JA032078, 2024. a, b
Zhao, Y., Taylor, M., Randall, C., Lumpe, J., Siskind, D., Bailey, S., and Russell, J.: Investigating seasonal gravity wave activity in the summer polar mesosphere, J. Atmos. Sol.-Terr. Phy., 127, 8–20, https://doi.org/10.1016/j.jastp.2015.03.008, 2015. a
Short summary
A new algorithm for medium-scale gravity wave analysis was developed for studies of gravity waves observed by airglow imaging. With this procedure, observation datasets can be analyzed to extract gravity wave parameters, such as period, horizontal wavelength, and phase speed, for climatological purposes. The procedure showed reliable performance and is ready for use at other observation sites.
A new algorithm for medium-scale gravity wave analysis was developed for studies of gravity...