Articles | Volume 18, issue 22
https://doi.org/10.5194/amt-18-6645-2025
https://doi.org/10.5194/amt-18-6645-2025
Research article
 | 
18 Nov 2025
Research article |  | 18 Nov 2025

Laboratory characterization of furan, 2(3H)-furanone, 2-furaldehyde, 2,5-dimethylfuran, and maleic anhydride measured by PTR-ToF-MS

Wade Permar, Mercedes Tucker, and Lu Hu

Related authors

Understanding the mechanism and importance of brown carbon bleaching across the visible spectrum in biomass burning plumes from the WE-CAN campaign
Yingjie Shen, Rudra P. Pokhrel, Amy P. Sullivan, Ezra J. T. Levin, Lauren A. Garofalo, Delphine K. Farmer, Wade Permar, Lu Hu, Darin W. Toohey, Teresa Campos, Emily V. Fischer, and Shane M. Murphy
Atmos. Chem. Phys., 24, 12881–12901, https://doi.org/10.5194/acp-24-12881-2024,https://doi.org/10.5194/acp-24-12881-2024, 2024
Short summary
Constraining emissions of volatile organic compounds from western US wildfires with WE-CAN and FIREX-AQ airborne observations
Lixu Jin, Wade Permar, Vanessa Selimovic, Damien Ketcherside, Robert J. Yokelson, Rebecca S. Hornbrook, Eric C. Apel, I-Ting Ku, Jeffrey L. Collett Jr., Amy P. Sullivan, Daniel A. Jaffe, Jeffrey R. Pierce, Alan Fried, Matthew M. Coggon, Georgios I. Gkatzelis, Carsten Warneke, Emily V. Fischer, and Lu Hu
Atmos. Chem. Phys., 23, 5969–5991, https://doi.org/10.5194/acp-23-5969-2023,https://doi.org/10.5194/acp-23-5969-2023, 2023
Short summary
Atmospheric biogenic volatile organic compounds in the Alaskan Arctic tundra: constraints from measurements at Toolik Field Station
Vanessa Selimovic, Damien Ketcherside, Sreelekha Chaliyakunnel, Catherine Wielgasz, Wade Permar, Hélène Angot, Dylan B. Millet, Alan Fried, Detlev Helmig, and Lu Hu
Atmos. Chem. Phys., 22, 14037–14058, https://doi.org/10.5194/acp-22-14037-2022,https://doi.org/10.5194/acp-22-14037-2022, 2022
Short summary

Cited articles

Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011. 
Apel, E. C., Hills, A. J., Lueb, R., Zindel, S., Eisele, S., and Riemer, D. D.: A fast-GC/MS system to measure C2 to C4 carbonyls and methanol aboard aircraft, Journal of Geophysical Research: Atmospheres, 108, 8794, https://doi.org/10.1029/2002JD003199, 2003. 
Azeez, A. M., Meier, D., and Odermatt, J.: Temperature dependence of fast pyrolysis volatile products from European and African biomasses, Journal of Analytical and Applied Pyrolysis, 90, 81–92, https://doi.org/10.1016/j.jaap.2010.11.005, 2011. 
Download
Short summary
Furanoids are volatile organic compounds that act as major OH sinks and ozone precursors in the atmosphere. We evaluate measurements of five furanoids under laboratory conditions. Sensitivities were stable across humidity and electric field changes, though some compounds fragmented or formed hydrated ions. Long-term gas standard concentrations were stable. Overall, measurements are accurate but affected by unknown ions and fragments.
Share