Chen, L.-W. A., Doddridge, B. G., Dickerson, R. R., Chow, J. C., and Henry, R. C.: Origins of Fine Aerosol Mass in the Baltimore–Washington Corridor: Implications from Observation, Factor Analysis, and Ensemble Air Parcel Back Trajectories, Atmospheric Environment, 36, 4541–4554, https://doi.org/10.1016/S1352-2310(02)00399-0, 2002.
Dreessen, J., Sullivan, J., and Delgado, R.: Observations and impacts of transported Canadian wildfire smoke on ozone and aerosol air quality in the Maryland region on June 9–12, 2015, Journal of the Air and Waste Management Association, 66, 842–862, https://doi.org/10.1080/10962247.2016.1161674, 2016.
Dreessen, J., Ren, X., Gardner, D., Green, K., Stratton, P., Sullivan, J. T., Delgado, R., Dickerson, R. R., Woodman, M., Berkoff, T., Gronoff, G., and Ring, A.: VOC and trace gas measurements and ozone chemistry over the Chesapeake Bay during OWLETS-2, 2018, Journal of the Air and Waste Management Association, 73, 178–199, https://doi.org/10.1080/10962247.2022.2136782, 2023.
Eck, T. F., Holben, B. N., Reid, J. S., Arola, A., Ferrare, R. A., Hostetler, C. A., Crumeyrolle, S. N., Berkoff, T. A., Welton, E. J., Lolli, S., Lyapustin, A., Wang, Y., Schafer, J. S., Giles, D. M., Anderson, B. E., Thornhill, K. L., Minnis, P., Pickering, K. E., Loughner, C. P., Smirnov, A., and Sinyuk, A.: Observations of rapid aerosol optical depth enhancements in the vicinity of polluted cumulus clouds, Atmos. Chem. Phys., 14, 11633–11656, https://doi.org/10.5194/acp-14-11633-2014, 2014.
El Asmar, R., Li, Z., Yu, H., O'Neill, S., Tanner, D. J., Huey, L. G., Odman, M. T., and Weber, R. J.: Formation of Ozone and PM
2.5 in Smoke from Prescribed Burning in the Southeastern United States, ACS ES&T Air, 2, 343–357, 2025.
Haarig, M., Ansmann, A., Baars, H., Jimenez, C., Veselovskii, I., Engelmann, R., and Althausen, D.: Depolarization and lidar ratios at 355, 532, and 1064 nm and microphysical properties of aged tropospheric and stratospheric Canadian wildfire smoke, Atmos. Chem. Phys., 18, 11847–11861, https://doi.org/10.5194/acp-18-11847-2018, 2018.
Hung, W.-T., Lu, C.-H., Shrestha, B., Lin, H.-C., Lin, C.-A., Grogan, D., Hong, J., Ahmadov, R., James, E., and Joseph, E.: The impacts of transported wildfire smoke aerosols on surface air quality in New York State: A case study in summer 2018, Atmospheric Environment, 227, 117415, https://doi.org/10.1016/j.atmosenv.2020.117415, 2020.
Inoue, J. and Sato, K.: Comparison of the depolarization measurement capability of a lidar ceilometer with cloud particle sensor sondes: A case study of liquid water clouds, Polar Science, 35, 100911, https://doi.org/10.1016/j.polar.2022.100911, 2023.
Jaffe, D. A. and Wigder, N. L.: Ozone production from wildfires: A critical review, Atmospheric Environment, 51, 1–10, https://doi.org/10.1016/j.atmosenv.2011.11.063, 2012.
Jaffe, D. A., O'Neill, S. M., Larkin, N. K., Holder, A. L., Peterson, D. L., Halofsky, J. E., and Rappold, A. G.: Wildfire and prescribed burning impacts on air quality in the United States, Journal of the Air and Waste Management Association, 70, 583–615, https://doi.org/10.1080/10962247.2020.1749731, 2020.
Jain, P., Barber, Q. E., Taylor, S. W., Whitman, E., Castellanos Acuna, D., Boulanger, Y., Chavardès, R. D., Chen, J., Englefield, P., Flannigan, M., Girardin, M. P., Hanes, C. C., Little, J., Morrison, K., Skakun, R. S., Thompson, D. K., Wang, X., and Parisien, M.-A.: Drivers and Impacts of the Record-Breaking 2023 Wildfire Season in Canada, Nat Commun, 15, 6764, https://doi.org/10.1038/s41467-024-51154-7, 2024.
Karle, N. N., Sakai, R. K., Chiao, S., Fitzgerald, R. M., and Stockwell, W. R.: Reinterpreting Trends: The Impact of Methodological Changes on Reported Sea Salt Aerosol Levels, Atmosphere, 15, 740, https://doi.org/10.3390/atmos15070740, 2024.
Kinney, P. L.: Climate Change, Air Quality, and Human Health, American Journal of Preventive Medicine, 35, 459–467, https://doi.org/10.1016/j.amepre.2008.08.025, 2008.
Lara, P., Fitzgerald, R. M., Karle, N. N., Talamantes, J., Miranda, M., Baumgardner, D., and Stockwell, W. R.: Winter and Wildfire Season Optical Characterization of Black and Brown Carbon in the El Paso-Ciudad Juárez Airshed, Atmosphere, 13, 1201, https://doi.org/10.3390/atmos13081201, 2022.
Liu, J. C., Mickley, L. J., Sulprizio, M. P., Dominici, F., Yue, X., Ebisu, K., Anderson, G. B., Khan, R. F. A., Bravo, M. A., and Bell, M. L.: Particulate air pollution from wildfires in the Western US under climate change, Climatic Change, 138, 655–666, https://doi.org/10.1007/s10584-016-1762-6, 2016.
Manavi, S. E. I., Aktypis, A., Siouti, E., Skyllakou, K., Myriokefalitakis, S., Kanakidou, M., and Pandis, S. N.: Atmospheric aerosol spatial variability: Impacts on air quality and climate change, One Earth, 3, 101237, https://doi.org/10.1016/j.oneear.2025.101237, 2025.
National Academy of Sciences: Wildland Fires: Toward Improved Understanding and Forecasting of Air Quality Impacts, Proceedings of a Workshop, The National Academies Press, Washington, DC, https://doi.org/10.17226/26465, 2022.
Natural Resources Canada: Forest Fires in Canada – 2015, Canadian Interagency Forest Fire Center,
https://publications.gc.ca/collections/collection_2017/rncan-nrcan/M4-136-2016-eng.pdf (last access: 29 March 2025), 2016.
Natural Resources Canada: National Wildland Fire Situation Report 2023, Government of Canada,
https://cwfis.cfs.nrcan.gc.ca/report (last access: 17 November 2025), 2024.
O'Dell, K., Ford, B., Fischer, E. V., and Pierce, J. R.: Contribution of Wildland-Fire Smoke to US PM
2.5 and Its Influence on Recent Trends, Environ. Sci. Technol., 53, 1797–1804, https://doi.org/10.1021/acs.est.8b05430, 2019.
Pahlow, M., Kleissl, J., and Parlange, M. B.: Atmospheric boundary-layer structure observed during a haze event due to forest-fire smoke, Boundary-Layer Meteorol, 114, 53–70, https://doi.org/10.1007/s10546-004-6350-z, 2005.
Pérez-Ramírez, D., Whiteman, D. N., Veselovskii, I., Ferrare, R., Titos, G., Granados-Muñoz, M. J., Sánchez-Hernández, G., and Navas-Guzmán, F.: Spatiotemporal changes in aerosol properties by hygroscopic growth and impacts on radiative forcing and heating rates during DISCOVER-AQ 2011, Atmos. Chem. Phys., 21, 12021–12048, https://doi.org/10.5194/acp-21-12021-2021, 2021.
Shen, J., Cohen, R. C., Wolfe, G. M., and Jin, X.: Impacts of wildfire smoke aerosols on near-surface ozone photochemistry, Atmos. Chem. Phys., 25, 8701–8718, https://doi.org/10.5194/acp-25-8701-2025, 2025.
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., and Ngan, F.: NOAA's HYSPLIT Atmospheric Transport and Dispersion Modeling System, Bulletin of the American Meteorological Society, 96, 2059–2077, https://doi.org/10.1175/BAMS-D-14-00110.1, 2015.
Stohl, A.: Computation, accuracy and applications of trajectories – A review and bibliography, Atmospheric Environment, 32, 947–966, 1998.
Tesche, M., Ansmann, A., Müller, D., Althausen, D., Engelmann, R., Freudenthaler, V., and Groß, S.: Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008, Journal of Geophysical Research: Atmospheres, 114, https://doi.org/10.1029/2009JD011862, 2009.
Urbanski, S. P.: Combustion efficiency and emission factors for wildfire-season fires in mixed conifer forests of the northern Rocky Mountains, US, Atmos. Chem. Phys., 13, 7241–7262, https://doi.org/10.5194/acp-13-7241-2013, 2013.
Vaisala: Vaisala Lidar Ceilometer CL61: Depolarization measurement with ceilometer, White paper B212267EN-A, Vaisala, Vantaa, Finland,
https://www.vaisala.com/sites/default/files/documents/WEA-MET-WhitePaper-CL61-B212267EN-A.pdf (last access: 17 November 2025), 2021.
Vaisala: Applications for Vaisala Lidar Ceilometer CL61 with Depolarization, White paper B212377EN-B, Vaisala, Vantaa, Finland,
https://www.vaisala.com/sites/default/files/documents/WEA-MET-WhitePaper-CL61-Applications-B212377EN-B.pdf (last access: 3 June 2025), 2022.
Val Martin, M., Logan, J. A., Kahn, R. A., Leung, F.-Y., Nelson, D. L., and Diner, D. J.: Smoke injection heights from fires in North America: analysis of 5 years of satellite observations, Atmos. Chem. Phys., 10, 1491–1510, https://doi.org/10.5194/acp-10-1491-2010, 2010.
Van der Kamp, D., McKendry, I., Wong, M., and Stull, R.: Lidar ceilometer observations and modeling of a fireworks plume in Vancouver, British Columbia, Atmospheric Environment, 42, 7174–7178, https://doi.org/10.1016/j.atmosenv.2008.06.047, 2008.
Veselovskii, I., Whiteman, D. N., Korenskiy, M., Kolgotin, A., Dubovik, O., Perez-Ramirez, D., and Suvorina, A.: Retrieval of spatio-temporal distributions of particle parameters from multiwavelength lidar measurements using the linear estimation technique and comparison with AERONET, Atmos. Meas. Tech., 6, 2671–2682, https://doi.org/10.5194/amt-6-2671-2013, 2013.
Veselovskii, I., Whiteman, D. N., Korenskiy, M., Suvorina, A., Kolgotin, A., Lyapustin, A., Wang, Y., Chin, M., Bian, H., Kucsera, T. L., Pérez-Ramírez, D., and Holben, B.: Characterization o
f forest fire smoke event near Washington, DC in summer 2013 with multi-wavelength lidar, Atmos. Chem. Phys., 15, 1647–1660, https://doi.org/10.5194/acp-15-1647-2015, 2015.
VIIRS Characterization Support Team: VIIRS/JPSS1 Imagery Resolution 6-Min L1B Swath 375 m (VJ102IMG), NASA MODIS Adaptive Processing System, Goddard Space Flight Center, USA,
https://modaps.modaps.eosdis.nasa.gov/services/about/products/viirs-c2/VJ102IMG.html (last access: 25 April 2025), 2016.
Wang, H., Xue, M., Zhang, X. Y., Liu, H. L., Zhou, C. H., Tan, S. C., Che, H. Z., Chen, B., and Li, T.: Mesoscale modeling study of the interactions between aerosols and PBL meteorology during a haze episode in Jing–Jin–Ji (China) and its nearby surrounding region – Part 1: Aerosol distributions and meteorological features, Atmos. Chem. Phys., 15, 3257–3275, https://doi.org/10.5194/acp-15-3257-2015, 2015.
Wu, Y., Cordero, L., Gross, B., Moshary, F., and Ahmed, S.: Smoke plume optical properties and transport observed by a multi-wavelength lidar, sunphotometer and satellite, Atmospheric Environment, 63, 32–42, https://doi.org/10.1016/j.atmosenv.2012.09.016, 2012.
Yang, Z., Demoz, B., Delgado, R., Sullivan, J., Tangborn, A., and Lee, P.: Influence of the transported Canadian wildfire smoke on the ozone and particle pollution over the Mid-Atlantic United States, Atmospheric Environment, 273, 118940, https://doi.org/10.1016/j.atmosenv.2022.118940, 2022.
Ye, X., Saide, P. E., Hair, J., Fenn, M., Shingler, T., Soja, A., Gargulinski, E., and Wiggins, E.: Assessing vertical allocation of wildfire smoke emissions using observational constraints from airborne lidar in the Western US, Journal of Geophysical Research: Atmospheres, 127, e2022JD036808, https://doi.org/10.1029/2022JD036808, 2022.
Zhang, Q., Wang, Y., Xiao, Q., Geng, G., Davis, S. J., Liu, X., Yang, J., Liu, J., Huang, W., He, C., and Luo, B.: Long-range PM
2.5 pollution and health impacts from the 2023 Canadian wildfires, Nature, 1–7, https://doi.org/10.1038/s41586-025-09482-1, 2025.