Bingham, E., Chen, J. P., Jankowiak, M., Obermeyer, F., Pradhan, N., Karaletsos, T., Singh, R., Szerlip, P., Horsfall, P., and Goodman, N. D.: Pyro: Deep Universal Probabilistic Programming, arXiv [preprint],
https://doi.org/10.48550/arXiv.1810.09538, 18 October 2018.
a
Biswas, A., Ziatdinov, M., and Kalinin, S. V.: Combining variational autoencoders and physical bias for improved microscopy data analysis, Machine Learning: Science and Technology, 4, 045004,
https://doi.org/10.1088/2632-2153/acf6a9, 2023.
a
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C. S.: Bounding the role of black carbon in the climate system: A scientific assessment, J. Geophys. Res.-Atmos., 118, 5380–5552, 2013.
a,
b
Christopoulos, C. D., Garimella, S., Zawadowicz, M. A., Möhler, O., and Cziczo, D. J.: A machine learning approach to aerosol classification for single-particle mass spectrometry, Atmos. Meas. Tech., 11, 5687–5699,
https://doi.org/10.5194/amt-11-5687-2018, 2018.
a
Gao, R., Schwarz, J., Kelly, K., Fahey, D., Watts, L., Thompson, T., Spackman, J., Slowik, J., Cross, E., Han, J.-H., et al.: A novel method for estimating light-scattering properties of soot aerosols using a modified single-particle soot photometer, Aerosol Sci. Tech., 41, 125–135, 2007.
a,
b,
c
Heimerl, K., Weinzierl, B., Gysel, M., Baumgardner, D., Kok, G., Linke, C., Schnaiter, M., Schwarz, J., Sheridan, P., Subramanian, R., and Walker, J.: Using a Single Particle Soot Photometer to detect and distinguish different absorbing aerosol types, in: European Aerosol Conference, 44, 663–675, 2012. a
Katich, J., Apel, E., Bourgeois, I., Brock, C., Bui, T., Campuzano-Jost, P., Commane, R., Daube, B., Dollner, M., Fromm, M., Froyd, K. D., Hills, A. J., Hornbrook, R. S., Jimenez, J. L., Kupc, A., Lamb, K. D., McKain, K., Moore, F., Murphy, D. M., Nault, B. A., Peischl, J., Perring, A. E., Peterson, D. A., Ray, E. A., Rosenlof, K. H., Ryerson, T., Schill, G. P., Schroder, J. C., Weinzierl, B., Thompson, C., Williamson, C. J., Wofsy, S. C., Yu, P., and Schwarz, J. P.: Pyrocumulonimbus affect average stratospheric aerosol composition, Science, 379, 815–820, 2023.
a,
b
Ko, J., Govindarajan, H., Lindsten, F., Pryzblo, V., Sulia, K., and Lamb, K.: Understanding Ice Crystal Habit Diversity with Self-Supervised Learning, in: Tackling Climate Change with AI Workshop, Conference on Neural Information Processing Systems, arXiv [preprint],
https://doi.org/10.48550/arXiv.2509.07688, 9 September 2025.
a
Lamb, K. D.: Classification of iron oxide aerosols by a single particle soot photometer using supervised machine learning, Atmos. Meas. Tech., 12, 3885–3906,
https://doi.org/10.5194/amt-12-3885-2019, 2019.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j,
k,
l,
m,
n,
o,
p,
q,
r,
s,
t
Lamb, K.: Laser-Induced Incandescent Signals for Laboratory Samples of Absorbing Aerosols Detected by the Single Particle Soot Photometer, Version v1, Zenodo [data set],
https://doi.org/10.5281/zenodo.15800436, 2025a.
a,
b
Lamb, K. D., Perring, A. E., Samset, B., Peterson, D., Davis, S., Anderson, B. E., Beyersdorf, A., Blake, D. R., Campuzano-Jost, P., Corr, C. A., Diskin, G. S., Kondo, Y., Moteki, N., Nault, B. A., Oh, J., Park, M., Pusede, S. E., Simpson, I. J., Thornhill, K. L., Wisthaler, A., and Schwarz, J. P.: Estimating source region influences on black carbon abundance, microphysics, and radiative effect observed over South Korea, J. Geophys. Res.-Atmos., 123, 13527–13548, 2018.
a,
b
Lamb, K., Matsui, H., Katich, J., Perring, A., Spackman, J., Weinzierl, B., Dollner, M., and Schwarz, J.: Global-scale constraints on light-absorbing anthropogenic iron oxide aerosols, npj Climate and Atmospheric Science, 4, 15,
https://doi.org/10.1038/s41612-021-00171-0, 2021.
a,
b,
c,
d,
e
Lamb, K., Singer, C., Loftus, K., Morrison, H., Powell, M., Ko, J., Buch, J., Hu, A., van Lier Walqui, M., and Gentine, P.: Perspectives on Systematic Cloud Microphysics Scheme Development with Machine Learning, ESS Open Archive [preprint],
https://doi.org/10.22541/essoar.175244548.89034582/v1, 13 July 2025.
a
Liu, D., Taylor, J. W., Crosier, J., Marsden, N., Bower, K. N., Lloyd, G., Ryder, C. L., Brooke, J. K., Cotton, R., Marenco, F., Blyth, A., Cui, Z., Estelles, V., Gallagher, M., Coe, H., and Choularton, T. W.: Aircraft and ground measurements of dust aerosols over the west African coast in summer 2015 during ICE-D and AER-D, Atmos. Chem. Phys., 18, 3817–3838,
https://doi.org/10.5194/acp-18-3817-2018, 2018.
a
Moteki, N., Kondo, Y., and Adachi, K.: Identification by single-particle soot photometer of black carbon particles attached to other particles: Laboratory experiments and ground observations in Tokyo, J. Geophys. Res.-Atmos., 119, 1031–1043,
https://doi.org/10.1002/2013JD020655, 2014.
a
Moteki, N., Adachi, K., Ohata, S., Yoshida, A., Harigaya, T., Koike, M., and Kondo, Y.: Anthropogenic iron oxide aerosols enhance atmospheric heating, Nat. Commun., 8, 15329,
https://doi.org/10.1038/ncomms15329, 2017.
a,
b
Pearson, K.: LIII. On lines and planes of closest fit to systems of points in space, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2, 559–572, 1901. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, É.: Scikit-learn: Machine learning in Python, the Journal of Machine Learning Research, 12, 2825–2830, 2011.
a,
b
Przybylo, V. M., Sulia, K. J., Schmitt, C. G., and Lebo, Z. J.: Classification of Cloud Particle Imagery from Aircraft Platforms Using Convolutional Neural Networks, J. Atmos. Ocean. Tech., 39, 405–424,
https://doi.org/10.1175/JTECH-D-21-0094.1, 2022.
a
Ruske, S., Topping, D. O., Foot, V. E., Kaye, P. H., Stanley, W. R., Crawford, I., Morse, A. P., and Gallagher, M. W.: Evaluation of machine learning algorithms for classification of primary biological aerosol using a new UV-LIF spectrometer, Atmos. Meas. Tech., 10, 695–708,
https://doi.org/10.5194/amt-10-695-2017, 2017.
a
Ruske, S., Topping, D. O., Foot, V. E., Morse, A. P., and Gallagher, M. W.: Machine learning for improved data analysis of biological aerosol using the WIBS, Atmos. Meas. Tech., 11, 6203–6230,
https://doi.org/10.5194/amt-11-6203-2018, 2018.
a
Schwarz, J., Gao, R., Fahey, D., Thomson, D., Watts, L., Wilson, J., Reeves, J., Darbeheshti, M., Baumgardner, D., Kok, G., Chung, S. H., Schulz, M., Hendricks, J., Lauer, A., Kärcher, B., Slowik, J. G., Rosenlof, K. H., Thompson, T. L., Langford, A. O., Loewenstein, M., and Aikin, K. C.: Single-particle measurements of midlatitude black carbon and light-scattering aerosols from the boundary layer to the lower stratosphere, J. Geophys. Res.-Atmos., 111, D16207,
https://doi.org/10.1029/2006JD007076, 2006.
a,
b,
c,
d,
e,
f
Schwarz, J., Spackman, J., Gao, R., Perring, A., Cross, E., Onasch, T., Ahern, A., Wrobel, W., Davidovits, P., Olfert, J., Dubey, M. K., Mazzoleni, C., and Fahey, D. W..: The detection efficiency of the single particle soot photometer, Aerosol Sci. Tech., 44, 612–628, 2010.
a,
b,
c,
d
Severson, K. A., Ghosh, S., and Ng, K.: Unsupervised learning with contrastive latent variable models, in: Proceedings of the AAAI Conference on Artificial Intelligence, 33, 4862–4869, 2019. a
Stephens, M., Turner, N., and Sandberg, J.: Particle identification by laser-induced incandescence in a solid-state laser cavity, Appl. Optics, 42, 3726–3736, 2003.
a,
b
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, Nature Methods, 17, 261–272,
https://doi.org/10.1038/s41592-019-0686-2, 2020.
a
Wei, R., Garcia, C., El-Sayed, A., Peterson, V., and Mahmood, A.: Variations in Variational Autoencoders – A Comparative Evaluation, IEEE Access, 8, 153651–153670,
https://doi.org/10.1109/ACCESS.2020.3018151, 2020.
a
Yoshida, A., Moteki, N., Ohata, S., Mori, T., Tada, R., Dagsson-Waldhauserová, P., and Kondo, Y.: Detection of light-absorbing iron oxide particles using a modified single-particle soot photometer, Aerosol Sci. Tech., 50, 1–4, 2016. a
Zawadowicz, M. A., Froyd, K. D., Murphy, D. M., and Cziczo, D. J.: Improved identification of primary biological aerosol particles using single-particle mass spectrometry, Atmos. Chem. Phys., 17, 7193–7212,
https://doi.org/10.5194/acp-17-7193-2017, 2017.
a
Ziatdinov, M.: PyroVED, GitHub [code],
https://github.com/ziatdinovmax/pyroVED (last access: 13 November 2025), 2023. a