Articles | Volume 18, issue 24
https://doi.org/10.5194/amt-18-7767-2025
https://doi.org/10.5194/amt-18-7767-2025
Research article
 | 
19 Dec 2025
Research article |  | 19 Dec 2025

Unsupervised classification of absorbing aerosols detected by the Single Particle Soot Photometer

Aaryan Doshi and Kara D. Lamb

Related authors

Representation of iron aerosol size distributions of anthropogenic emissions is critical in evaluating atmospheric soluble iron input to the ocean
Mingxu Liu, Hitoshi Matsui, Douglas S. Hamilton, Sagar D. Rathod, Kara D. Lamb, and Natalie M. Mahowald
Atmos. Chem. Phys., 24, 13115–13127, https://doi.org/10.5194/acp-24-13115-2024,https://doi.org/10.5194/acp-24-13115-2024, 2024
Short summary
Re-evaluating cloud chamber constraints on depositional ice growth in cirrus clouds – Part 1: Model description and sensitivity tests
Kara D. Lamb, Jerry Y. Harrington, Benjamin W. Clouser, Elisabeth J. Moyer, Laszlo Sarkozy, Volker Ebert, Ottmar Möhler, and Harald Saathoff
Atmos. Chem. Phys., 23, 6043–6064, https://doi.org/10.5194/acp-23-6043-2023,https://doi.org/10.5194/acp-23-6043-2023, 2023
Short summary
Complex refractive indices in the ultraviolet and visible spectral region for highly absorbing non-spherical biomass burning aerosol
Caroline C. Womack, Katherine M. Manfred, Nicholas L. Wagner, Gabriela Adler, Alessandro Franchin, Kara D. Lamb, Ann M. Middlebrook, Joshua P. Schwarz, Charles A. Brock, Steven S. Brown, and Rebecca A. Washenfelder
Atmos. Chem. Phys., 21, 7235–7252, https://doi.org/10.5194/acp-21-7235-2021,https://doi.org/10.5194/acp-21-7235-2021, 2021
Short summary

Cited articles

Abid, A. and Zou, J.: Contrastive variational autoencoder enhances salient features, arXiv [preprint], https://doi.org/10.48550/arXiv.1902.04601, 12 February 2019. a
Adachi, K., Moteki, N., Kondo, Y., and Igarashi, Y.: Mixing states of light-absorbing particles measured using a transmission electron microscope and a single-particle soot photometer in Tokyo, Japan, J. Geophys. Res.-Atmos., 121, 9153–9164, 2016. a
Allwayin, N., Larsen, M. L., Glienke, S., and Shaw, R. A.: Locally narrow droplet size distributions are ubiquitous in stratocumulus clouds, Science, 384, 528–532, 2024. a
Bac, J., Mirkes, E. M., Gorban, A. N., Tyukin, I., and Zinovyev, A.: Scikit-dimension: a python package for intrinsic dimension estimation, Entropy, 23, 1368, https://doi.org/10.3390/e23101368, 2021. a
Baumgardner, D., Popovicheva, O., Allan, J., Bernardoni, V., Cao, J., Cavalli, F., Cozic, J., Diapouli, E., Eleftheriadis, K., Genberg, P. J., Gonzalez, C., Gysel, M., John, A., Kirchstetter, T. W., Kuhlbusch, T. A. J., Laborde, M., Lack, D., Müller, T., Niessner, R., Petzold, A., Piazzalunga, A., Putaud, J. P., Schwarz, J., Sheridan, P., Subramanian, R., Swietlicki, E., Valli, G., Vecchi, R., and Viana, M.: Soot reference materials for instrument calibration and intercomparisons: a workshop summary with recommendations, Atmos. Meas. Tech., 5, 1869–1887, https://doi.org/10.5194/amt-5-1869-2012, 2012. a
Short summary
Aerosols that absorb sunlight play key role in Earth's climate. To improve detection of light-absorbing aerosols measured by the Single Particle Soot Photometer, we explore unsupervised machine learning. Unlike earlier methods that require labeled training data, our approach learns patterns directly from unlabeled data. This makes it more applicable to atmospheric observations. We show this method can be used to quantify how similar aerosols are to one another and improve aerosol classification.
Share