Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF 5-year value: 3.707
IF 5-year
CiteScore value: 6.3
SNIP value: 1.383
IPP value: 3.75
SJR value: 1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
h5-index value: 49
Volume 3, issue 4
Atmos. Meas. Tech., 3, 1063–1074, 2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 3, 1063–1074, 2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.

  18 Aug 2010

18 Aug 2010

High time-resolution chemical characterization of the water-soluble fraction of ambient aerosols with PILS-TOC-IC and AMS

H. Timonen1, M. Aurela1, S. Carbone1, K. Saarnio1, S. Saarikoski1, T. Mäkelä1, M. Kulmala2, V.-M. Kerminen1,2, D. R. Worsnop1,2,3, and R. Hillamo1 H. Timonen et al.
  • 1Air Quality Research, Finnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, Finland
  • 2Department of Physics, University of Helsinki, P.O. Box 64, 00014 University of Helsinki, Finland
  • 3Aerodyne Research, Inc., 45 Manning Road, Billerica, MA 01821-3976, USA

Abstract. A particle-into-liquid sampler (PILS) was coupled with a total organic carbon analyzer (TOC) and two ion chromatographs (IC) to enable high time-resolution measurements of water-soluble ions and water-soluble organic carbon (WSOC) by a single sampling and analytical set-up. The new high time-resolution measurement system, the PILS-TOC-IC, was able to provide essential chemical and physical information about fast changes in composition, concentrations and likely sources of the water-soluble fraction of atmospheric aerosol. The concentrations of major water-soluble ions and WSOC were measured by the PILS-TOC-IC system from 25 April to 28 May 2009.

The data of the PILS-TOC-IC setup was compared with the data from the High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) data measured from 25 April to 8 May 2009. The measured water-soluble particulate organic matter (WSPOM) concentration varied typically from 0.10 to 8.8 μg m−3 (on average 1.5 μg m−3). The WSPOM contributed on average 51% to particulate organic matter (POM) measured with the AMS. The correlation between the data of all the online measurement devices (AMS, PILS-TOC-IC, semicontinuous EC/OC carbon analyzer and TEOM) was excellent. For sulfate, nitrate and ammonium the correlations between the PILS-TOC-IC and AMS were 0.93, 0.96 and 0.96, respectively. The correlation between WSPOM and POM was also strong (r = 0.88). The identified sources of WSPOM were long-range transported biomass burning and secondary organic aerosol (SOA) formation. WSPOM and oxalate produced in biomass burning were clearly correlated with carbon monoxide.

Publications Copernicus