Articles | Volume 3, issue 4
18 Aug 2010
 | 18 Aug 2010

High time-resolution chemical characterization of the water-soluble fraction of ambient aerosols with PILS-TOC-IC and AMS

H. Timonen, M. Aurela, S. Carbone, K. Saarnio, S. Saarikoski, T. Mäkelä, M. Kulmala, V.-M. Kerminen, D. R. Worsnop, and R. Hillamo

Abstract. A particle-into-liquid sampler (PILS) was coupled with a total organic carbon analyzer (TOC) and two ion chromatographs (IC) to enable high time-resolution measurements of water-soluble ions and water-soluble organic carbon (WSOC) by a single sampling and analytical set-up. The new high time-resolution measurement system, the PILS-TOC-IC, was able to provide essential chemical and physical information about fast changes in composition, concentrations and likely sources of the water-soluble fraction of atmospheric aerosol. The concentrations of major water-soluble ions and WSOC were measured by the PILS-TOC-IC system from 25 April to 28 May 2009.

The data of the PILS-TOC-IC setup was compared with the data from the High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) data measured from 25 April to 8 May 2009. The measured water-soluble particulate organic matter (WSPOM) concentration varied typically from 0.10 to 8.8 μg m−3 (on average 1.5 μg m−3). The WSPOM contributed on average 51% to particulate organic matter (POM) measured with the AMS. The correlation between the data of all the online measurement devices (AMS, PILS-TOC-IC, semicontinuous EC/OC carbon analyzer and TEOM) was excellent. For sulfate, nitrate and ammonium the correlations between the PILS-TOC-IC and AMS were 0.93, 0.96 and 0.96, respectively. The correlation between WSPOM and POM was also strong (r = 0.88). The identified sources of WSPOM were long-range transported biomass burning and secondary organic aerosol (SOA) formation. WSPOM and oxalate produced in biomass burning were clearly correlated with carbon monoxide.