Greenhouse gas profiling by infrared-laser and microwave occultation: retrieval algorithm and demonstration results from end-to-end simulations
Abstract. Measuring greenhouse gas (GHG) profiles with global coverage and high accuracy and vertical resolution in the upper troposphere and lower stratosphere (UTLS) is key for improved monitoring of GHG concentrations in the free atmosphere. In this respect a new satellite mission concept adding an infrared-laser part to the already well studied microwave occultation technique exploits the joint propagation of infrared-laser and microwave signals between Low Earth Orbit (LEO) satellites. This synergetic combination, referred to as LEO-LEO microwave and infrared-laser occultation (LMIO) method, enables to retrieve thermodynamic profiles (pressure, temperature, humidity) and accurate altitude levels from the microwave signals and GHG profiles from the simultaneously measured infrared-laser signals. However, due to the novelty of the LMIO method, a retrieval algorithm for GHG profiling is not yet available. Here we introduce such an algorithm for retrieving GHGs from LEO-LEO infrared-laser occultation (LIO) data, applied as a second step after retrieving thermodynamic profiles from LEO-LEO microwave occultation (LMO) data. We thoroughly describe the LIO retrieval algorithm and unveil the synergy with the LMO-retrieved pressure, temperature, and altitude information. We furthermore demonstrate the effective independence of the GHG retrieval results from background (a priori) information in discussing demonstration results from LMIO end-to-end simulations for a representative set of GHG profiles, including carbon dioxide (CO2), water vapor (H2O), methane (CH4), and ozone (O3). The GHGs except for ozone are well retrieved throughout the UTLS, while ozone is well retrieved from about 10 km to 15 km upwards, since the ozone layer resides in the lower stratosphere. The GHG retrieval errors are generally smaller than 1% to 3% r.m.s., at a vertical resolution of about 1 km. The retrieved profiles also appear unbiased, which points to the climate benchmarking capability of the LMIO method. This performance, found here for clear-air atmospheric conditions, is unprecedented for vertical profiling of GHGs in the free atmosphere and encouraging for future LMIO implementation. Subsequent work will examine GHG retrievals in cloudy air, addressing retrieval performance when scanning through intermittent upper tropospheric cloudiness.