Anisotropy of small-scale stratospheric irregularities retrieved from scintillations of a double star α-Cru observed by GOMOS/ENVISAT
Abstract. In this paper, we discuss estimating anisotropy of air density irregularities (ratio of characteristic horizontal and vertical scales) from satellite observations of bi-chromatic scintillations of a double star whose components are not resolved by the detector. The analysis is based on fitting experimental auto- and cross-spectra of scintillations by those computed using the 3-D spectral model of atmospheric irregularities consisting of anisotropic and isotropic components. Application of the developed method to the scintillation measurements of the double star α-Cru by GOMOS (Global Ozone Monitoring by Occultation of Stars) fast photometers results in estimates of anisotropy coefficient of ~15–20 at altitudes 30–38 km, as well as other parameters of atmospheric irregularities. The obtained estimates of the anisotropy coefficient correspond to small-scale irregularities, close to the buoyancy scale.