Articles | Volume 5, issue 2
https://doi.org/10.5194/amt-5-457-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/amt-5-457-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
The Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI): design, execution, and early results
A. J. M. Piters
Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands
K. F. Boersma
Technical University Eindhoven (TUE), Eindhoven, The Netherlands
Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands
M. Kroon
Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands
J. C. Hains
Maryland Department of the Environment (MDE), Baltimore, MD, USA
M. Van Roozendael
Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
F. Wittrock
Institute of Environmental Physics (IUP), University of Bremen, Bremen, Germany
N. Abuhassan
NASA/Goddard Space Flight Center (GSFC), Greenbelt, MD, USA
Morgan State University (MSU), Baltimore, MD, USA
C. Adams
Department of Physics, University of Toronto, Toronto, Ontario, Canada
M. Akrami
Department of Physics, University of Toronto, Toronto, Ontario, Canada
M. A. F. Allaart
Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands
A. Apituley
National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands
S. Beirle
Max Planck Institute for Chemistry (MPIC), Mainz, Germany
J. B. Bergwerff
National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
A. J. C. Berkhout
National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
D. Brunner
Swiss Federal Laboratories for Materials Science and Technology (EMPA), Dübendorff, Switzerland
A. Cede
University of Maryland, Baltimore County (UMBC), Catonsville, MD, USA
NASA/Goddard Space Flight Center (GSFC), Greenbelt, MD, USA
J. Chong
Gwangju Institute of Science and Technology, Gwangiu, Republic of Korea
K. Clémer
Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
C. Fayt
Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
U. Frieß
Institute of Environmental Physics, University of Heidelberg, Heidelberg, Germany
L. F. L. Gast
National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
M. Gil-Ojeda
National Institute for Aerospace technology (INTA), Madrid, Spain
F. Goutail
Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Guyancourt, France
R. Graves
Department of Chemistry, University of Leicester, Leicester, UK
A. Griesfeller
Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Guyancourt, France
K. Großmann
Institute of Environmental Physics, University of Heidelberg, Heidelberg, Germany
G. Hemerijckx
Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
F. Hendrick
Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
B. Henzing
Netherlands Organization for Applied Scientific Research (TNO), Utrecht, The Netherlands
J. Herman
University of Maryland, Baltimore County (UMBC), Catonsville, MD, USA
NASA/Goddard Space Flight Center (GSFC), Greenbelt, MD, USA
C. Hermans
Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
M. Hoexum
National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
G. R. van der Hoff
National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
H. Irie
Research Institute for Global Change, JAMSTEC, Yokohama, Japan
P. V. Johnston
National Institute of Water & Atmospheric Research (NIWA), Lauder, New Zealand
Y. Kanaya
Research Institute for Global Change, JAMSTEC, Yokohama, Japan
Y. J. Kim
Gwangju Institute of Science and Technology, Gwangiu, Republic of Korea
H. Klein Baltink
Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands
K. Kreher
National Institute of Water & Atmospheric Research (NIWA), Lauder, New Zealand
G. de Leeuw
Finnish Meteorological Institute (FMI), Helsinki, Finland
Netherlands Organization for Applied Scientific Research (TNO), Utrecht, The Netherlands
Department of Physics, University of Helsinki, Helsinki, Finland
R. Leigh
Department of Chemistry, University of Leicester, Leicester, UK
A. Merlaud
Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
M. M. Moerman
Netherlands Organization for Applied Scientific Research (TNO), Utrecht, The Netherlands
P. S. Monks
Department of Chemistry, University of Leicester, Leicester, UK
G. H. Mount
Laboratory for Atmospheric Research, Washington State University (WSU), Pullman, WA, USA
M. Navarro-Comas
National Institute for Aerospace technology (INTA), Madrid, Spain
H. Oetjen
School of Chemistry, University of Leeds, Leeds, UK
A. Pazmino
Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Guyancourt, France
M. Perez-Camacho
National Institute for Aerospace technology (INTA), Madrid, Spain
E. Peters
Institute of Environmental Physics (IUP), University of Bremen, Bremen, Germany
A. du Piesanie
Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands
G. Pinardi
Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
O. Puentedura
National Institute for Aerospace technology (INTA), Madrid, Spain
A. Richter
Institute of Environmental Physics (IUP), University of Bremen, Bremen, Germany
H. K. Roscoe
British Antarctic Survey (BAS), Cambridge, UK
A. Schönhardt
Institute of Environmental Physics (IUP), University of Bremen, Bremen, Germany
B. Schwarzenbach
Swiss Federal Laboratories for Materials Science and Technology (EMPA), Dübendorff, Switzerland
R. Shaiganfar
Max Planck Institute for Chemistry (MPIC), Mainz, Germany
W. Sluis
Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands
E. Spinei
Laboratory for Atmospheric Research, Washington State University (WSU), Pullman, WA, USA
A. P. Stolk
National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
K. Strong
Department of Physics, University of Toronto, Toronto, Ontario, Canada
D. P. J. Swart
National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
H. Takashima
Research Institute for Global Change, JAMSTEC, Yokohama, Japan
T. Vlemmix
Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands
M. Vrekoussis
Institute of Environmental Physics (IUP), University of Bremen, Bremen, Germany
Research Center for Atmospheric Physics and Climatology, Academy of Athens, Athens, Greece
T. Wagner
Max Planck Institute for Chemistry (MPIC), Mainz, Germany
C. Whyte
Department of Physics, University of Toronto, Toronto, Ontario, Canada
K. M. Wilson
National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands
M. Yela
National Institute for Aerospace technology (INTA), Madrid, Spain
S. Yilmaz
Institute of Environmental Physics, University of Heidelberg, Heidelberg, Germany
P. Zieger
Laboratory of Atmospheric Chemistry, Paul Scherrer Institut (PSI), Villigen, Switzerland
Y. Zhou
Swiss Federal Laboratories for Materials Science and Technology (EMPA), Dübendorff, Switzerland
Viewed
Total article views: 6,708 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 16 Sep 2011)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
3,684 | 2,852 | 172 | 6,708 | 208 | 152 |
- HTML: 3,684
- PDF: 2,852
- XML: 172
- Total: 6,708
- BibTeX: 208
- EndNote: 152
Total article views: 5,650 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 27 Feb 2012)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
3,170 | 2,351 | 129 | 5,650 | 176 | 136 |
- HTML: 3,170
- PDF: 2,351
- XML: 129
- Total: 5,650
- BibTeX: 176
- EndNote: 136
Total article views: 1,058 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 16 Sep 2011)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
514 | 501 | 43 | 1,058 | 32 | 16 |
- HTML: 514
- PDF: 501
- XML: 43
- Total: 1,058
- BibTeX: 32
- EndNote: 16
Cited
55 citations as recorded by crossref.
- Long-term MAX-DOAS network observations of NO<sub>2</sub> in Russia and Asia (MADRAS) during the period 2007–2012: instrumentation, elucidation of climatology, and comparisons with OMI satellite observations and global model simulations Y. Kanaya et al. 10.5194/acp-14-7909-2014
- BOREAS – a new MAX-DOAS profile retrieval algorithm for aerosols and trace gases T. Bösch et al. 10.5194/amt-11-6833-2018
- Investigating differences in DOAS retrieval codes using MAD-CAT campaign data E. Peters et al. 10.5194/amt-10-955-2017
- MAX-DOAS measurements of HONO slant column densities during the MAD-CAT campaign: inter-comparison, sensitivity studies on spectral analysis settings, and error budget Y. Wang et al. 10.5194/amt-10-3719-2017
- Measuring the Vertical Profiles of Aerosol Extinction in the Lower Troposphere by MAX-DOAS at a Rural Site in the North China Plain S. Cheng et al. 10.3390/atmos11101037
- Absolute radiance calibration in the UV and visible spectral range using atmospheric observations during twilight T. Wagner & J. Puķīte 10.5194/amt-17-277-2024
- On the use of data from commercial NOx analyzers for air pollution studies R. Dickerson et al. 10.1016/j.atmosenv.2019.116873
- The IAGOS NO<sub><i>x</i></sub> instrument – design, operation and first results from deployment aboard passenger aircraft F. Berkes et al. 10.5194/amt-11-3737-2018
- Evaluating different methods for elevation calibration of MAX-DOAS (Multi AXis Differential Optical Absorption Spectroscopy) instruments during the CINDI-2 campaign S. Donner et al. 10.5194/amt-13-685-2020
- MAX-DOAS formaldehyde slant column measurements during CINDI: intercomparison and analysis improvement G. Pinardi et al. 10.5194/amt-6-167-2013
- Preflight Evaluation of the Performance of the Chinese Environmental Trace Gas Monitoring Instrument (EMI) by Spectral Analyses of Nitrogen Dioxide C. Zhang et al. 10.1109/TGRS.2018.2798038
- Tropospheric and stratospheric ozone profiles during the 2019 TROpomi vaLIdation eXperiment (TROLIX-19) J. Sullivan et al. 10.5194/acp-22-11137-2022
- Evaluation of MAX-DOAS aerosol retrievals by coincident observations using CRDS, lidar, and sky radiometer inTsukuba, Japan H. Irie et al. 10.5194/amt-8-2775-2015
- Full-azimuthal imaging-DOAS observations of NO<sub>2</sub> and O<sub>4</sub> during CINDI-2 E. Peters et al. 10.5194/amt-12-4171-2019
- Aerosol profiling during the large scale field campaign CINDI-2 A. Apituley et al. 10.1051/epjconf/201817610005
- Formaldehyde and nitrogen dioxide over the remote western Pacific Ocean: SCIAMACHY and GOME-2 validation using ship-based MAX-DOAS observations E. Peters et al. 10.5194/acp-12-11179-2012
- Intercomparison of aerosol extinction profiles retrieved from MAX-DOAS measurements U. Frieß et al. 10.5194/amt-9-3205-2016
- Atmospheric NO2 profiles measured with lidar during the CINDI-2 campaign A. Berkhout et al. 10.1051/epjconf/201817610002
- Quantitative bias estimates for tropospheric NO<sub>2</sub> columns retrieved from SCIAMACHY, OMI, and GOME-2 using a common standard for East Asia H. Irie et al. 10.5194/amt-5-2403-2012
- The Ozone Monitoring Instrument: overview of 14 years in space P. Levelt et al. 10.5194/acp-18-5699-2018
- Intercomparison of NO<sub>2</sub>, O<sub>4</sub>, O<sub>3</sub> and HCHO slant column measurements by MAX-DOAS and zenith-sky UV–visible spectrometers during CINDI-2 K. Kreher et al. 10.5194/amt-13-2169-2020
- Atmospheric boundary layer height from ground-based remote sensing: a review of capabilities and limitations S. Kotthaus et al. 10.5194/amt-16-433-2023
- TROPOMI NO2 Tropospheric Column Data: Regridding to 1 km Grid-Resolution and Assessment of their Consistency with In Situ Surface Observations A. Cersosimo et al. 10.3390/rs12142212
- Validation of tropospheric NO<sub>2</sub> column measurements of GOME-2A and OMI using MAX-DOAS and direct sun network observations G. Pinardi et al. 10.5194/amt-13-6141-2020
- Two Air Quality Regimes in Total Column NO2 Over the Gulf of Mexico in May 2019: Shipboard and Satellite Views A. Thompson et al. 10.1029/2022EA002473
- Long-term MAX-DOAS measurements of NO<sub>2</sub>, HCHO, and aerosols and evaluation of corresponding satellite data products over Mohali in the Indo-Gangetic Plain V. Kumar et al. 10.5194/acp-20-14183-2020
- Synergistic use of OMI NO2 tropospheric columns and LOTOS–EUROS to evaluate the NOx emission trends across Europe R. Curier et al. 10.1016/j.rse.2014.03.032
- Inter-comparison of MAX-DOAS measurements of tropospheric HONO slant column densities and vertical profiles during the CINDI-2 campaign Y. Wang et al. 10.5194/amt-13-5087-2020
- Tropospheric nitrogen dioxide column retrieval from ground-based zenith–sky DOAS observations F. Tack et al. 10.5194/amt-8-2417-2015
- Effects of local meteorology and aerosols on ozone and nitrogen dioxide retrievals from OMI and pandora spectrometers in Maryland, USA during DISCOVER-AQ 2011 A. Reed et al. 10.1007/s10874-013-9254-9
- Evaluation of OMI operational standard NO<sub>2</sub> column retrievals using in situ and surface-based NO<sub>2</sub> observations L. Lamsal et al. 10.5194/acp-14-11587-2014
- Shipborne MAX-DOAS measurements for validation of TROPOMI NO<sub>2</sub> products P. Wang et al. 10.5194/amt-13-1413-2020
- Comparison of tropospheric NO<sub>2</sub> columns from MAX-DOAS retrievals and regional air quality model simulations A. Blechschmidt et al. 10.5194/acp-20-2795-2020
- The use of NO<sub>2</sub> absorption cross section temperature sensitivity to derive NO<sub>2</sub> profile temperature and stratospheric–tropospheric column partitioning from visible direct-sun DOAS measurements E. Spinei et al. 10.5194/amt-7-4299-2014
- A simple and versatile cloud-screening method for MAX-DOAS retrievals C. Gielen et al. 10.5194/amt-7-3509-2014
- Cloud detection and classification based on MAX-DOAS observations T. Wagner et al. 10.5194/amt-7-1289-2014
- Liquid water absorption and scattering effects in DOAS retrievals over oceans E. Peters et al. 10.5194/amt-7-4203-2014
- Assessment of the quality of TROPOMI high-spatial-resolution NO<sub>2</sub> data products in the Greater Toronto Area X. Zhao et al. 10.5194/amt-13-2131-2020
- Assessment of mixed-layer height estimation from single-wavelength ceilometer profiles T. Knepp et al. 10.5194/amt-10-3963-2017
- Retrieval of total column and surface NO<sub>2</sub> from Pandora zenith-sky measurements X. Zhao et al. 10.5194/acp-19-10619-2019
- Cloud and aerosol classification for 2.5 years of MAX-DOAS observations in Wuxi (China) and comparison to independent data sets Y. Wang et al. 10.5194/amt-8-5133-2015
- Ground ozone variations at an urban and a rural station in Beijing from 2006 to 2017: Trend, meteorological influences and formation regimes N. Cheng et al. 10.1016/j.jclepro.2019.06.204
- Ground-based validation of the Copernicus Sentinel-5P TROPOMI NO<sub>2</sub> measurements with the NDACC ZSL-DOAS, MAX-DOAS and Pandonia global networks T. Verhoelst et al. 10.5194/amt-14-481-2021
- The CU 2-D-MAX-DOAS instrument – Part 1: Retrieval of 3-D distributions of NO<sub>2</sub> and azimuth-dependent OVOC ratios I. Ortega et al. 10.5194/amt-8-2371-2015
- Characterizing the seasonal cycle and vertical structure of ozone in Paris, France using four years of ground based LIDAR measurements in the lowermost troposphere A. Klein et al. 10.1016/j.atmosenv.2017.08.016
- Ship-based MAX-DOAS measurements of tropospheric NO 2 and SO 2 in the South China and Sulu Sea S. Schreier et al. 10.1016/j.atmosenv.2014.12.015
- The Network for the Detection of Atmospheric Composition Change (NDACC): history, status and perspectives M. De Mazière et al. 10.5194/acp-18-4935-2018
- Absolute calibration of the colour index and O<sub>4</sub> absorption derived from Multi AXis (MAX-)DOAS measurements and their application to a standardised cloud classification algorithm T. Wagner et al. 10.5194/amt-9-4803-2016
- Ability of the MAX-DOAS method to derive profile information for NO<sub>2</sub>: can the boundary layer and free troposphere be separated? T. Vlemmix et al. 10.5194/amt-4-2659-2011
- Tropospheric NO<sub>2</sub> vertical column densities over Beijing: results of the first three years of ground-based MAX-DOAS measurements (2008–2011) and satellite validation J. Ma et al. 10.5194/acp-13-1547-2013
- A new method for the absolute radiance calibration for UV–vis measurements of scattered sunlight T. Wagner et al. 10.5194/amt-8-4265-2015
- MAX-DOAS tropospheric nitrogen dioxide column measurements compared with the Lotos-Euros air quality model T. Vlemmix et al. 10.5194/acp-15-1313-2015
- An improved tropospheric NO<sub>2</sub> column retrieval algorithm for the Ozone Monitoring Instrument K. Boersma et al. 10.5194/amt-4-1905-2011
- Diurnal variability of stratospheric column NO2 measured using direct solar and lunar spectra over Table Mountain, California (34.38° N) K. Li et al. 10.5194/amt-14-7495-2021
- Estimation of NO<sub>x</sub> emissions from Delhi using Car MAX-DOAS observations and comparison with OMI satellite data R. Shaiganfar et al. 10.5194/acp-11-10871-2011
54 citations as recorded by crossref.
- Long-term MAX-DOAS network observations of NO<sub>2</sub> in Russia and Asia (MADRAS) during the period 2007–2012: instrumentation, elucidation of climatology, and comparisons with OMI satellite observations and global model simulations Y. Kanaya et al. 10.5194/acp-14-7909-2014
- BOREAS – a new MAX-DOAS profile retrieval algorithm for aerosols and trace gases T. Bösch et al. 10.5194/amt-11-6833-2018
- Investigating differences in DOAS retrieval codes using MAD-CAT campaign data E. Peters et al. 10.5194/amt-10-955-2017
- MAX-DOAS measurements of HONO slant column densities during the MAD-CAT campaign: inter-comparison, sensitivity studies on spectral analysis settings, and error budget Y. Wang et al. 10.5194/amt-10-3719-2017
- Measuring the Vertical Profiles of Aerosol Extinction in the Lower Troposphere by MAX-DOAS at a Rural Site in the North China Plain S. Cheng et al. 10.3390/atmos11101037
- Absolute radiance calibration in the UV and visible spectral range using atmospheric observations during twilight T. Wagner & J. Puķīte 10.5194/amt-17-277-2024
- On the use of data from commercial NOx analyzers for air pollution studies R. Dickerson et al. 10.1016/j.atmosenv.2019.116873
- The IAGOS NO<sub><i>x</i></sub> instrument – design, operation and first results from deployment aboard passenger aircraft F. Berkes et al. 10.5194/amt-11-3737-2018
- Evaluating different methods for elevation calibration of MAX-DOAS (Multi AXis Differential Optical Absorption Spectroscopy) instruments during the CINDI-2 campaign S. Donner et al. 10.5194/amt-13-685-2020
- MAX-DOAS formaldehyde slant column measurements during CINDI: intercomparison and analysis improvement G. Pinardi et al. 10.5194/amt-6-167-2013
- Preflight Evaluation of the Performance of the Chinese Environmental Trace Gas Monitoring Instrument (EMI) by Spectral Analyses of Nitrogen Dioxide C. Zhang et al. 10.1109/TGRS.2018.2798038
- Tropospheric and stratospheric ozone profiles during the 2019 TROpomi vaLIdation eXperiment (TROLIX-19) J. Sullivan et al. 10.5194/acp-22-11137-2022
- Evaluation of MAX-DOAS aerosol retrievals by coincident observations using CRDS, lidar, and sky radiometer inTsukuba, Japan H. Irie et al. 10.5194/amt-8-2775-2015
- Full-azimuthal imaging-DOAS observations of NO<sub>2</sub> and O<sub>4</sub> during CINDI-2 E. Peters et al. 10.5194/amt-12-4171-2019
- Aerosol profiling during the large scale field campaign CINDI-2 A. Apituley et al. 10.1051/epjconf/201817610005
- Formaldehyde and nitrogen dioxide over the remote western Pacific Ocean: SCIAMACHY and GOME-2 validation using ship-based MAX-DOAS observations E. Peters et al. 10.5194/acp-12-11179-2012
- Intercomparison of aerosol extinction profiles retrieved from MAX-DOAS measurements U. Frieß et al. 10.5194/amt-9-3205-2016
- Atmospheric NO2 profiles measured with lidar during the CINDI-2 campaign A. Berkhout et al. 10.1051/epjconf/201817610002
- Quantitative bias estimates for tropospheric NO<sub>2</sub> columns retrieved from SCIAMACHY, OMI, and GOME-2 using a common standard for East Asia H. Irie et al. 10.5194/amt-5-2403-2012
- The Ozone Monitoring Instrument: overview of 14 years in space P. Levelt et al. 10.5194/acp-18-5699-2018
- Intercomparison of NO<sub>2</sub>, O<sub>4</sub>, O<sub>3</sub> and HCHO slant column measurements by MAX-DOAS and zenith-sky UV–visible spectrometers during CINDI-2 K. Kreher et al. 10.5194/amt-13-2169-2020
- Atmospheric boundary layer height from ground-based remote sensing: a review of capabilities and limitations S. Kotthaus et al. 10.5194/amt-16-433-2023
- TROPOMI NO2 Tropospheric Column Data: Regridding to 1 km Grid-Resolution and Assessment of their Consistency with In Situ Surface Observations A. Cersosimo et al. 10.3390/rs12142212
- Validation of tropospheric NO<sub>2</sub> column measurements of GOME-2A and OMI using MAX-DOAS and direct sun network observations G. Pinardi et al. 10.5194/amt-13-6141-2020
- Two Air Quality Regimes in Total Column NO2 Over the Gulf of Mexico in May 2019: Shipboard and Satellite Views A. Thompson et al. 10.1029/2022EA002473
- Long-term MAX-DOAS measurements of NO<sub>2</sub>, HCHO, and aerosols and evaluation of corresponding satellite data products over Mohali in the Indo-Gangetic Plain V. Kumar et al. 10.5194/acp-20-14183-2020
- Synergistic use of OMI NO2 tropospheric columns and LOTOS–EUROS to evaluate the NOx emission trends across Europe R. Curier et al. 10.1016/j.rse.2014.03.032
- Inter-comparison of MAX-DOAS measurements of tropospheric HONO slant column densities and vertical profiles during the CINDI-2 campaign Y. Wang et al. 10.5194/amt-13-5087-2020
- Tropospheric nitrogen dioxide column retrieval from ground-based zenith–sky DOAS observations F. Tack et al. 10.5194/amt-8-2417-2015
- Effects of local meteorology and aerosols on ozone and nitrogen dioxide retrievals from OMI and pandora spectrometers in Maryland, USA during DISCOVER-AQ 2011 A. Reed et al. 10.1007/s10874-013-9254-9
- Evaluation of OMI operational standard NO<sub>2</sub> column retrievals using in situ and surface-based NO<sub>2</sub> observations L. Lamsal et al. 10.5194/acp-14-11587-2014
- Shipborne MAX-DOAS measurements for validation of TROPOMI NO<sub>2</sub> products P. Wang et al. 10.5194/amt-13-1413-2020
- Comparison of tropospheric NO<sub>2</sub> columns from MAX-DOAS retrievals and regional air quality model simulations A. Blechschmidt et al. 10.5194/acp-20-2795-2020
- The use of NO<sub>2</sub> absorption cross section temperature sensitivity to derive NO<sub>2</sub> profile temperature and stratospheric–tropospheric column partitioning from visible direct-sun DOAS measurements E. Spinei et al. 10.5194/amt-7-4299-2014
- A simple and versatile cloud-screening method for MAX-DOAS retrievals C. Gielen et al. 10.5194/amt-7-3509-2014
- Cloud detection and classification based on MAX-DOAS observations T. Wagner et al. 10.5194/amt-7-1289-2014
- Liquid water absorption and scattering effects in DOAS retrievals over oceans E. Peters et al. 10.5194/amt-7-4203-2014
- Assessment of the quality of TROPOMI high-spatial-resolution NO<sub>2</sub> data products in the Greater Toronto Area X. Zhao et al. 10.5194/amt-13-2131-2020
- Assessment of mixed-layer height estimation from single-wavelength ceilometer profiles T. Knepp et al. 10.5194/amt-10-3963-2017
- Retrieval of total column and surface NO<sub>2</sub> from Pandora zenith-sky measurements X. Zhao et al. 10.5194/acp-19-10619-2019
- Cloud and aerosol classification for 2.5 years of MAX-DOAS observations in Wuxi (China) and comparison to independent data sets Y. Wang et al. 10.5194/amt-8-5133-2015
- Ground ozone variations at an urban and a rural station in Beijing from 2006 to 2017: Trend, meteorological influences and formation regimes N. Cheng et al. 10.1016/j.jclepro.2019.06.204
- Ground-based validation of the Copernicus Sentinel-5P TROPOMI NO<sub>2</sub> measurements with the NDACC ZSL-DOAS, MAX-DOAS and Pandonia global networks T. Verhoelst et al. 10.5194/amt-14-481-2021
- The CU 2-D-MAX-DOAS instrument – Part 1: Retrieval of 3-D distributions of NO<sub>2</sub> and azimuth-dependent OVOC ratios I. Ortega et al. 10.5194/amt-8-2371-2015
- Characterizing the seasonal cycle and vertical structure of ozone in Paris, France using four years of ground based LIDAR measurements in the lowermost troposphere A. Klein et al. 10.1016/j.atmosenv.2017.08.016
- Ship-based MAX-DOAS measurements of tropospheric NO 2 and SO 2 in the South China and Sulu Sea S. Schreier et al. 10.1016/j.atmosenv.2014.12.015
- The Network for the Detection of Atmospheric Composition Change (NDACC): history, status and perspectives M. De Mazière et al. 10.5194/acp-18-4935-2018
- Absolute calibration of the colour index and O<sub>4</sub> absorption derived from Multi AXis (MAX-)DOAS measurements and their application to a standardised cloud classification algorithm T. Wagner et al. 10.5194/amt-9-4803-2016
- Ability of the MAX-DOAS method to derive profile information for NO<sub>2</sub>: can the boundary layer and free troposphere be separated? T. Vlemmix et al. 10.5194/amt-4-2659-2011
- Tropospheric NO<sub>2</sub> vertical column densities over Beijing: results of the first three years of ground-based MAX-DOAS measurements (2008–2011) and satellite validation J. Ma et al. 10.5194/acp-13-1547-2013
- A new method for the absolute radiance calibration for UV–vis measurements of scattered sunlight T. Wagner et al. 10.5194/amt-8-4265-2015
- MAX-DOAS tropospheric nitrogen dioxide column measurements compared with the Lotos-Euros air quality model T. Vlemmix et al. 10.5194/acp-15-1313-2015
- An improved tropospheric NO<sub>2</sub> column retrieval algorithm for the Ozone Monitoring Instrument K. Boersma et al. 10.5194/amt-4-1905-2011
- Diurnal variability of stratospheric column NO2 measured using direct solar and lunar spectra over Table Mountain, California (34.38° N) K. Li et al. 10.5194/amt-14-7495-2021
Saved (final revised paper)
Latest update: 21 Nov 2024