Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF 5-year value: 3.707
IF 5-year
CiteScore value: 6.3
SNIP value: 1.383
IPP value: 3.75
SJR value: 1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
h5-index value: 49
Volume 6, issue 5
Atmos. Meas. Tech., 6, 1413–1423, 2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 6, 1413–1423, 2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 24 May 2013

Research article | 24 May 2013

Validation of six years of TES tropospheric ozone retrievals with ozonesonde measurements: implications for spatial patterns and temporal stability in the bias

W. W. Verstraeten1,2, K. F. Boersma1,2, J. Zörner2,*, M. A. F. Allaart1, K. W. Bowman3, and J. R. Worden3 W. W. Verstraeten et al.
  • 1Royal Netherlands Meteorological Institute, Climate Observations, De Bilt, the Netherlands
  • 2Eindhoven University of Technology, Fluid Dynamics Lab, Eindhoven, the Netherlands
  • 3Jet Propulsion Laboratory (CalTech), Pasadena, California, USA
  • *now at: Max Planck Institute for Chemistry, Mainz, Germany

Abstract. In this analysis, Tropospheric Emission Spectrometer (TES) V004 nadir ozone (O3) profiles are validated with more than 4400 coinciding ozonesonde measurements taken across the world from the World Ozone and Ultraviolet Radiation Data Centre (WOUDC) during the period 2005–2010. The TES observation operator was applied to the sonde data to ensure a consistent comparison between TES and ozonesonde data, i.e. without the influence of the a priori O3 profile needed to regulate the retrieval. Generally, TES V004 O3 retrievals are biased high by 2–7 ppbv (7–15%) in the troposphere, consistent with validation results from earlier studies. Because of two degrees of freedom for signal in the troposphere, we can distinguish between upper and lower troposphere mean biases, respectively ranging from −0.4 to +13.3 ppbv for the upper troposphere and +3.9 to +6.0 ppbv for the lower troposphere. Focusing on the 464 hPa retrieval level, broadly representative of the free tropospheric O3, we find differences in the TES biases for the tropics (+3 ppbv, +7%), sub-tropics (+5 ppbv, +11%), and northern (+7 ppbv, +13%) and southern mid-latitudes (+4 ppbv, +10%). The relatively long-term record (6 yr) of TES–ozonesonde comparisons allowed us to quantify temporal variations in TES biases at 464 hPa. We find that there are no discernable biases in each of these latitudinal bands; temporal variations in the bias are typically within the uncertainty of the difference between TES and ozonesondes. Establishing these bias patterns is important in order to make meaningful use of TES O3 data in applications such as model evaluation, trend analysis, or data assimilation.

Publications Copernicus