Articles | Volume 6, issue 4
https://doi.org/10.5194/amt-6-895-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/amt-6-895-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Global tropospheric ozone column retrievals from OMI data by means of neural networks
A. Di Noia
Earth Observation Laboratory, Department of Civil and Computer Engineering, Tor Vergata University, via del Politecnico 1, 00133 Rome, Italy
Royal Netherlands Meteorological Institute (KNMI), Wilhelminalaan 10, 3732 GK De Bilt, the Netherlands
now at: SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, the Netherlands
P. Sellitto
Laboratoire Inter-universitaire des Systèmes Atmosphériques (LISA), UMR7583, Universités Paris-Est et Paris Diderot, CNRS, Rue du Général de Gaulle, 94010 Créteil, France
F. Del Frate
Earth Observation Laboratory, Department of Civil and Computer Engineering, Tor Vergata University, via del Politecnico 1, 00133 Rome, Italy
J. de Laat
Royal Netherlands Meteorological Institute (KNMI), Wilhelminalaan 10, 3732 GK De Bilt, the Netherlands
Viewed
Total article views: 4,507 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 22 Oct 2012)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,594 | 1,780 | 133 | 4,507 | 162 | 114 |
- HTML: 2,594
- PDF: 1,780
- XML: 133
- Total: 4,507
- BibTeX: 162
- EndNote: 114
Total article views: 3,602 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 09 Apr 2013)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,224 | 1,273 | 105 | 3,602 | 139 | 102 |
- HTML: 2,224
- PDF: 1,273
- XML: 105
- Total: 3,602
- BibTeX: 139
- EndNote: 102
Total article views: 905 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 22 Oct 2012)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
370 | 507 | 28 | 905 | 23 | 12 |
- HTML: 370
- PDF: 507
- XML: 28
- Total: 905
- BibTeX: 23
- EndNote: 12
Cited
14 citations as recorded by crossref.
- Monitoring the lowermost tropospheric ozone with thermal infrared observations from a geostationary platform: performance analyses for a future dedicated instrument P. Sellitto et al. 10.5194/amt-7-391-2014
- Evaluation of Tropopause Height from Sentinel-6 GNSS Radio Occultation Using Different Methods M. Zhran et al. 10.3390/rs15235513
- Use of NARX neural networks for Meteosat Second Generation SEVIRI very short-term cloud mask forecasting S. Peronaci et al. 10.1080/2150704X.2016.1249296
- Understanding the drivers of marine liquid-water cloud occurrence and properties with global observations using neural networks H. Andersen et al. 10.5194/acp-17-9535-2017
- Remote Sensing of Tropospheric Ozone from Space: Progress and Challenges J. Xu et al. 10.34133/remotesensing.0178
- Tropospheric column amount of ozone retrieved from SCIAMACHY limb–nadir-matching observations F. Ebojie et al. 10.5194/amt-7-2073-2014
- Quantitative Assessment of Different Air Pollutants (QADAP) Using Daily MODIS Images A. Ahmadian Marj et al. 10.1007/s41742-017-0046-y
- Use of A Neural Network-Based Ocean Body Radiative Transfer Model for Aerosol Retrievals from Multi-Angle Polarimetric Measurements C. Fan et al. 10.3390/rs11232877
- Characterization of Volcanic Cloud Components Using Machine Learning Techniques and SEVIRI Infrared Images F. Torrisi et al. 10.3390/s22207712
- Tropospheric Ozone Assessment Report: Tropospheric ozone from 1877 to 2016, observed levels, trends and uncertainties D. Tarasick et al. 10.1525/elementa.376
- The feasibility of retrieving vertical temperature profiles from satellite nadir UV observations: A sensitivity analysis and an inversion experiment with neural network algorithms P. Sellitto & F. Del Frate 10.1016/j.jqsrt.2014.02.023
- Development of neural network retrievals of liquid cloud properties from multi-angle polarimetric observations M. Segal-Rozenhaimer et al. 10.1016/j.jqsrt.2018.08.030
- Biases of Global Tropopause Altitude Products in Reanalyses and Implications for Estimates of Tropospheric Column Ozone L. Meng et al. 10.3390/atmos12040417
- A neural network algorithm for cloud fraction estimation using NASA-Aura OMI VIS radiance measurements G. Saponaro et al. 10.5194/amt-6-2301-2013
13 citations as recorded by crossref.
- Monitoring the lowermost tropospheric ozone with thermal infrared observations from a geostationary platform: performance analyses for a future dedicated instrument P. Sellitto et al. 10.5194/amt-7-391-2014
- Evaluation of Tropopause Height from Sentinel-6 GNSS Radio Occultation Using Different Methods M. Zhran et al. 10.3390/rs15235513
- Use of NARX neural networks for Meteosat Second Generation SEVIRI very short-term cloud mask forecasting S. Peronaci et al. 10.1080/2150704X.2016.1249296
- Understanding the drivers of marine liquid-water cloud occurrence and properties with global observations using neural networks H. Andersen et al. 10.5194/acp-17-9535-2017
- Remote Sensing of Tropospheric Ozone from Space: Progress and Challenges J. Xu et al. 10.34133/remotesensing.0178
- Tropospheric column amount of ozone retrieved from SCIAMACHY limb–nadir-matching observations F. Ebojie et al. 10.5194/amt-7-2073-2014
- Quantitative Assessment of Different Air Pollutants (QADAP) Using Daily MODIS Images A. Ahmadian Marj et al. 10.1007/s41742-017-0046-y
- Use of A Neural Network-Based Ocean Body Radiative Transfer Model for Aerosol Retrievals from Multi-Angle Polarimetric Measurements C. Fan et al. 10.3390/rs11232877
- Characterization of Volcanic Cloud Components Using Machine Learning Techniques and SEVIRI Infrared Images F. Torrisi et al. 10.3390/s22207712
- Tropospheric Ozone Assessment Report: Tropospheric ozone from 1877 to 2016, observed levels, trends and uncertainties D. Tarasick et al. 10.1525/elementa.376
- The feasibility of retrieving vertical temperature profiles from satellite nadir UV observations: A sensitivity analysis and an inversion experiment with neural network algorithms P. Sellitto & F. Del Frate 10.1016/j.jqsrt.2014.02.023
- Development of neural network retrievals of liquid cloud properties from multi-angle polarimetric observations M. Segal-Rozenhaimer et al. 10.1016/j.jqsrt.2018.08.030
- Biases of Global Tropopause Altitude Products in Reanalyses and Implications for Estimates of Tropospheric Column Ozone L. Meng et al. 10.3390/atmos12040417
1 citations as recorded by crossref.
Saved (final revised paper)
Latest update: 21 Nov 2024