Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.668 IF 3.668
  • IF 5-year value: 3.707 IF 5-year
  • CiteScore value: 6.3 CiteScore
  • SNIP value: 1.383 SNIP 1.383
  • IPP value: 3.75 IPP 3.75
  • SJR value: 1.525 SJR 1.525
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 77 Scimago H
    index 77
  • h5-index value: 49 h5-index 49
Volume 7, issue 7
Atmos. Meas. Tech., 7, 1969–1977, 2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 7, 1969–1977, 2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 03 Jul 2014

Research article | 03 Jul 2014

A newly identified calculation discrepancy of the Sunset semi-continuous carbon analyzer

G. J. Zheng1, Y. Cheng1, K. B. He1,2,3, F. K. Duan1, and Y. L. Ma1 G. J. Zheng et al.
  • 1State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
  • 2State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing, China
  • 3Collaborative Innovation Center for Regional Environmental Quality, Beijing, China

Abstract. The Sunset semi-continuous carbon analyzer (SCCA) is an instrument widely used for carbonaceous aerosol measurement. Despite previous validation work, in this study we identified a new type of SCCA calculation discrepancy caused by the default multipoint baseline correction method. When exceeding a certain threshold carbon load, multipoint correction could cause significant total carbon (TC) underestimation. This calculation discrepancy was characterized for both sucrose and ambient samples, with two protocols based on IMPROVE (Interagency Monitoring of PROtected Visual Environments) (i.e., IMPshort and IMPlong) and one NIOSH (National Institute for Occupational Safety and Health)-like protocol (rtNIOSH). For ambient samples, the IMPshort, IMPlong and rtNIOSH protocol underestimated 22, 36 and 12% of TC, respectively, with the corresponding threshold being ~ 0, 20 and 25 μgC. For sucrose, however, such discrepancy was observed only with the IMPshort protocol, indicating the need of more refractory SCCA calibration substance. Although the calculation discrepancy could be largely reduced by the single-point baseline correction method, the instrumental blanks of single-point method were higher. The correction method proposed was to use multipoint-corrected data when below the determined threshold, and use single-point results when beyond that threshold. The effectiveness of this correction method was supported by correlation with optical data.

Publications Copernicus