Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
Volume 8, issue 4
Atmos. Meas. Tech., 8, 1733–1756, 2015
https://doi.org/10.5194/amt-8-1733-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 8, 1733–1756, 2015
https://doi.org/10.5194/amt-8-1733-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 15 Apr 2015

Research article | 15 Apr 2015

Retrievals of formaldehyde from ground-based FTIR and MAX-DOAS observations at the Jungfraujoch station and comparisons with GEOS-Chem and IMAGES model simulations

B. Franco et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Publications Copernicus
Download
Short summary
Formaldehyde (HCHO) amounts are obtained from ground-based Fourier transform infrared solar spectra and UV-visible Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) scans recorded at the Jungfraujoch station (46.5°N, 8.0°E, 3580m a.s.l.). Using HCHO amounts simulated by the chemical transport models GEOS-Chem and IMAGES as intermediates, comparisons reveal that FTIR and MAX-DOAS provide complementary products for the HCHO retrieval.
Formaldehyde (HCHO) amounts are obtained from ground-based Fourier transform infrared solar...
Citation