Articles | Volume 8, issue 5
Atmos. Meas. Tech., 8, 1935–1949, 2015
Atmos. Meas. Tech., 8, 1935–1949, 2015

Research article 06 May 2015

Research article | 06 May 2015

A model sensitivity study of the impact of clouds on satellite detection and retrieval of volcanic ash

A. Kylling1, N. Kristiansen1, A. Stohl1, R. Buras-Schnell2, C. Emde3, and J. Gasteiger3 A. Kylling et al.
  • 1NILU – Norwegian Institute for Air Research, P. O. Box 100, 2027 Kjeller, Norway
  • 2Schnell Algorithms, Am Erdäpfelgarten 1, 82205 Gilching, Germany
  • 3Meteorological Institute, Ludwig-Maximilians-University, Munich, Germany

Abstract. Volcanic ash is commonly observed by infrared detectors on board Earth-orbiting satellites. In the presence of ice and/or liquid-water clouds, the detected volcanic ash signature may be altered. In this paper the sensitivity of detection and retrieval of volcanic ash to the presence of ice and liquid-water clouds was quantified by simulating synthetic equivalents to satellite infrared images with a 3-D radiative transfer model. The sensitivity study was made for the two recent eruptions of Eyjafjallajökull (2010) and Grímsvötn (2011) using realistic water and ice clouds and volcanic ash clouds. The water and ice clouds were taken from European Centre for Medium-Range Weather Forecast (ECMWF) analysis data and the volcanic ash cloud fields from simulations by the Lagrangian particle dispersion model FLEXPART. The radiative transfer simulations were made both with and without ice and liquid-water clouds for the geometry and channels of the Spinning Enhanced Visible and Infrared Imager (SEVIRI). The synthetic SEVIRI images were used as input to standard reverse absorption ash detection and retrieval methods. Ice and liquid-water clouds were on average found to reduce the number of detected ash-affected pixels by 6–12%. However, the effect was highly variable and for individual scenes up to 40% of pixels with mass loading >0.2 g m−2 could not be detected due to the presence of water and ice clouds. For coincident pixels, i.e. pixels where ash was both present in the FLEXPART (hereafter referred to as "Flexpart") simulation and detected by the algorithm, the presence of clouds overall increased the retrieved mean mass loading for the Eyjafjallajökull (2010) eruption by about 13%, while for the Grímsvötn (2011) eruption ash-mass loadings the effect was a 4% decrease of the retrieved ash-mass loading. However, larger differences were seen between scenes (standard deviations of ±30 and ±20% for Eyjafjallajökull and Grímsvötn, respectively) and even larger ones within scenes. The impact of ice and liquid-water clouds on the detection and retrieval of volcanic ash, implies that to fully appreciate the location and amount of ash, hyperspectral and spectral band measurements by satellite instruments should be combined with ash dispersion modelling.

Short summary
Water and ice clouds affect detection and retrieval of volcanic ash clouds by satellite instruments. Synthetic infrared satellite images were generated for the Eyjafjallajokull 2010 and Grimsvotn 2011 eruptions by combining weather forecast, ash transport and radiative transfer modelling. Clouds decreased the number of pixels identified as ash and generally increased the retrieved ash-mass loading compared to the cloudless case; however, large differences were seen between scenes.