Articles | Volume 8, issue 5
https://doi.org/10.5194/amt-8-2069-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/amt-8-2069-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Big grains go far: understanding the discrepancy between tephrochronology and satellite infrared measurements of volcanic ash
J. A. Stevenson
CORRESPONDING AUTHOR
School of GeoSciences, University of Edinburgh, Edinburgh, UK
S. C. Millington
Met Office, Exeter, UK
F. M. Beckett
Met Office, Exeter, UK
G. T. Swindles
School of Geography, University of Leeds, Leeds, UK
T. Thordarson
Institute of Earth Sciences, Háskóli Íslands, Reykjavík, Iceland
Viewed
Total article views: 6,603 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 06 Jan 2015)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
4,223 | 2,018 | 362 | 6,603 | 697 | 168 | 187 |
- HTML: 4,223
- PDF: 2,018
- XML: 362
- Total: 6,603
- Supplement: 697
- BibTeX: 168
- EndNote: 187
Total article views: 4,837 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 19 May 2015)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
3,131 | 1,383 | 323 | 4,837 | 323 | 136 | 154 |
- HTML: 3,131
- PDF: 1,383
- XML: 323
- Total: 4,837
- Supplement: 323
- BibTeX: 136
- EndNote: 154
Total article views: 1,766 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 06 Jan 2015)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,092 | 635 | 39 | 1,766 | 32 | 33 |
- HTML: 1,092
- PDF: 635
- XML: 39
- Total: 1,766
- BibTeX: 32
- EndNote: 33
Cited
61 citations as recorded by crossref.
- Free-fall experiments of volcanic ash particles using a 2-D video disdrometer S. Suh et al. 10.5194/amt-12-5363-2019
- Phases in fine volcanic ash A. Hornby et al. 10.1038/s41598-023-41412-x
- The lifecycle of volcanic ash: advances and ongoing challenges J. Paredes-Mariño et al. 10.1007/s00445-022-01557-5
- Flow Development and Entrainment in Turbulent Particle‐Laden Jets L. Shannon et al. 10.1029/2022JD038108
- Reconstructing eruptive source parameters from tephra deposit: a numerical study of medium-sized explosive eruptions at Etna volcano A. Spanu et al. 10.1007/s00445-016-1051-2
- Modeling Eruption Source Parameters by Integrating Field, Ground‐Based, and Satellite‐Based Measurements: The Case of the 23 February 2013 Etna Paroxysm M. Poret et al. 10.1029/2017JB015163
- Magmatic activity at the Silurian/Devonian boundary in the Brunovistulia and Małopolska Terranes (S Poland): possible link with the Rheic Ocean closure and the onset of the Rheno-Hercynian Basin J. Nawrocki et al. 10.1017/S0016756819000384
- Quantifying the mass loading of particles in an ash cloud remobilized from tephra deposits on Iceland F. Beckett et al. 10.5194/acp-17-4401-2017
- Sensitivity of dispersion model forecasts of volcanic ash clouds to the physical characteristics of the particles F. Beckett et al. 10.1002/2015JD023609
- Tephra characterization and multi-disciplinary determination of Eruptive Source Parameters of a weak paroxysm at Mount Etna (Italy) V. Freret-Lorgeril et al. 10.1016/j.jvolgeores.2021.107431
- Coarse and giant particles are ubiquitous in Saharan dust export regions and are radiatively significant over the Sahara C. Ryder et al. 10.5194/acp-19-15353-2019
- Atmospheric processes affecting the separation of volcanic ash and SO<sub>2</sub> in volcanic eruptions: inferences from the May 2011 Grímsvötn eruption F. Prata et al. 10.5194/acp-17-10709-2017
- Coarse-mode mineral dust size distributions, composition and optical properties from AER-D aircraft measurements over the tropical eastern Atlantic C. Ryder et al. 10.5194/acp-18-17225-2018
- Correlating tephras and cryptotephras using glass compositional analyses and numerical and statistical methods: Review and evaluation D. Lowe et al. 10.1016/j.quascirev.2017.08.003
- Estimating the 3D shape of volcanic ash to better understand sedimentation processes and improve atmospheric dispersion modelling J. Saxby et al. 10.1016/j.epsl.2020.116075
- A Multi-Sensor Approach for Volcanic Ash Cloud Retrieval and Eruption Characterization: The 23 November 2013 Etna Lava Fountain S. Corradini et al. 10.3390/rs8010058
- Neodymium isotopes in peat reveal past local environmental disturbances K. Marcisz et al. 10.1016/j.scitotenv.2023.161859
- High-precision U–Pb geochronology of the Lundy igneous complex: implications for North Atlantic volcanism and the far-field Paleocene–Eocene ash record K. Lisica et al. 10.1144/jgs2023-140
- Epistemic uncertainties and natural hazard risk assessment – Part 1: A review of different natural hazard areas K. Beven et al. 10.5194/nhess-18-2741-2018
- A multi-dating approach to age-modelling long continental records: The 135 ka El Cañizar de Villarquemado sequence (NE Spain) B. Valero-Garcés et al. 10.1016/j.quageo.2019.101006
- Tuffaceous Mud is a Volumetrically Important Volcaniclastic Facies of Submarine Arc Volcanism and Record of Climate Change J. Gill et al. 10.1002/2017GC007300
- Calcia–magnesia–alumina-silica particle deposition prediction in gas turbines using a Eulerian–Lagrangian approach in computational fluid dynamics B. Wasistho 10.1557/jmr.2020.233
- Tephrostratigraphy of Jurassic-Cretaceous boundary beds of Western Siberia I. Panchenko et al. 10.2205/2022ES000817
- FALL3D-8.0: a computational model for atmospheric transport and deposition of particles, aerosols and radionuclides – Part 2: Model validation A. Prata et al. 10.5194/gmd-14-409-2021
- Confocal microscopy 3D imaging and bioreactivity of La Palma volcanic ash particles D. Wertheim et al. 10.1016/j.scitotenv.2023.165647
- The importance of grain size and shape in controlling the dispersion of the Vedde cryptotephra J. Saxby et al. 10.1002/jqs.3152
- The first physical evidence of subglacial volcanism under the West Antarctic Ice Sheet N. Iverson et al. 10.1038/s41598-017-11515-3
- Advancements and best practices for analysis and correlation of tephra and cryptotephra in ice N. Iverson et al. 10.1016/j.quageo.2016.09.008
- High resolution 3D confocal microscope imaging of volcanic ash particles D. Wertheim et al. 10.1016/j.scitotenv.2017.02.230
- 3D imaging of volcanic ash using the confocal microscope; a comparison of natural fragments and experimentally vesiculated volcanic glass G. Gillmore et al. 10.1007/s11069-023-05823-3
- Crossing new frontiers: extending tephrochronology as a global geoscientific research tool P. Abbott et al. 10.1002/jqs.3184
- Laboratory Investigation of Particle‐Scale Factors Affecting the Settling Velocity of Volcaniclastic Dust T. Richards‐Thomas & C. McKenna‐Neuman 10.1029/2020JD032660
- Examples of Multi-Sensor Determination of Eruptive Source Parameters of Explosive Events at Mount Etna V. Freret-Lorgeril et al. 10.3390/rs13112097
- Measuring the size of non-spherical particles and the implications for grain size analysis in volcanology H. Buckland et al. 10.1016/j.jvolgeores.2021.107257
- Standard chemical‐based tephra extraction methods significantly alter the geochemistry of volcanic glass shards C. Cooper et al. 10.1002/jqs.3169
- Determination of complex refractive indices and optical properties of volcanic ashes in the thermal infrared based on generic petrological compositions D. Piontek et al. 10.1016/j.jvolgeores.2021.107174
- Atmospheric Dispersion Modelling at the London VAAC: A Review of Developments since the 2010 Eyjafjallajökull Volcano Ash Cloud F. Beckett et al. 10.3390/atmos11040352
- Operational Response to Volcanic Ash Risks Using HOTVOLC Satellite-Based System and MOCAGE-Accident Model at the Toulouse VAAC M. Gouhier et al. 10.3390/atmos11080864
- Chicxulub-like Gale impact into an ocean/land interface on Mars: An explanation for the formation of Mount Sharp J. Dohm et al. 10.1016/j.icarus.2022.115306
- No evidence for tephra in Greenland from the historic eruption of Vesuvius in 79 CE: implications for geochronology and paleoclimatology G. Plunkett et al. 10.5194/cp-18-45-2022
- Near-source Doppler radar monitoring of tephra plumes at Etna F. Donnadieu et al. 10.1016/j.jvolgeores.2016.01.009
- Petrologic monitoring at Volcán de Fuego, Guatemala E. Liu et al. 10.1016/j.jvolgeores.2020.107044
- The fate of volcanic ash: premature or delayed sedimentation? E. Rossi et al. 10.1038/s41467-021-21568-8
- Sensitivity of Volcanic Ash Dispersion Modelling to Input Grain Size Distribution Based on Hydromagmatic and Magmatic Deposits S. Osman et al. 10.3390/atmos11060567
- Conducting volcanic ash cloud exercises: practising forecast evaluation procedures and the pull-through of scientific advice to the London VAAC F. Beckett et al. 10.1007/s00445-024-01717-9
- Vegetation structure influences the retention of airfall tephra in a sub-Arctic landscape N. Cutler et al. 10.1177/0309133316650618
- The transport of Icelandic volcanic ash: Insights from northern European cryptotephra records E. Watson et al. 10.1002/2016JB013350
- Identification of Icelandic tephras from the last two millennia in the White Sea region (Vodoprovodnoe peat bog, northwestern Russia) P. Vakhrameeva et al. 10.1002/jqs.3190
- Optical modeling of volcanic ash particles using ellipsoids S. Merikallio et al. 10.1002/2014JD022792
- A model sensitivity study of the impact of clouds on satellite detection and retrieval of volcanic ash A. Kylling et al. 10.5194/amt-8-1935-2015
- Spatial variability of tephra and carbon accumulation in a Holocene peatland E. Watson et al. 10.1016/j.quascirev.2015.07.025
- The impact of particle shape on fall velocity: Implications for volcanic ash dispersion modelling J. Saxby et al. 10.1016/j.jvolgeores.2018.08.006
- Uncertainty in two-channel infrared remote sensing retrievals of a well-characterised volcanic ash cloud L. Western et al. 10.1007/s00445-015-0950-y
- Low efficiency of large volcanic eruptions in transporting very fine ash into the atmosphere M. Gouhier et al. 10.1038/s41598-019-38595-7
- Do peatlands or lakes provide the most comprehensive distal tephra records? E. Watson et al. 10.1016/j.quascirev.2016.03.011
- New Zealand supereruption provides time marker for the Last Glacial Maximum in Antarctica N. Dunbar et al. 10.1038/s41598-017-11758-0
- Cryptotephras: the revolution in correlation and precision dating S. DAVIES 10.1002/jqs.2766
- Far‐travelled ash in past and future eruptions: combining tephrochronology with volcanic studies K. Cashman & A. Rust 10.1002/jqs.3159
- Optimising shape analysis to quantify volcanic ash morphology E. Liu et al. 10.1016/j.grj.2015.09.001
- Volcanic ash concentration during the 12 August 2011 Etna eruption S. Scollo et al. 10.1002/2015GL063027
- Impact of the lateral blast on the spatial pattern and grain size characteristics of the 18 May 1980 Mount St. Helens fallout deposit J. Eychenne et al. 10.1002/2015JB012116
48 citations as recorded by crossref.
- Free-fall experiments of volcanic ash particles using a 2-D video disdrometer S. Suh et al. 10.5194/amt-12-5363-2019
- Phases in fine volcanic ash A. Hornby et al. 10.1038/s41598-023-41412-x
- The lifecycle of volcanic ash: advances and ongoing challenges J. Paredes-Mariño et al. 10.1007/s00445-022-01557-5
- Flow Development and Entrainment in Turbulent Particle‐Laden Jets L. Shannon et al. 10.1029/2022JD038108
- Reconstructing eruptive source parameters from tephra deposit: a numerical study of medium-sized explosive eruptions at Etna volcano A. Spanu et al. 10.1007/s00445-016-1051-2
- Modeling Eruption Source Parameters by Integrating Field, Ground‐Based, and Satellite‐Based Measurements: The Case of the 23 February 2013 Etna Paroxysm M. Poret et al. 10.1029/2017JB015163
- Magmatic activity at the Silurian/Devonian boundary in the Brunovistulia and Małopolska Terranes (S Poland): possible link with the Rheic Ocean closure and the onset of the Rheno-Hercynian Basin J. Nawrocki et al. 10.1017/S0016756819000384
- Quantifying the mass loading of particles in an ash cloud remobilized from tephra deposits on Iceland F. Beckett et al. 10.5194/acp-17-4401-2017
- Sensitivity of dispersion model forecasts of volcanic ash clouds to the physical characteristics of the particles F. Beckett et al. 10.1002/2015JD023609
- Tephra characterization and multi-disciplinary determination of Eruptive Source Parameters of a weak paroxysm at Mount Etna (Italy) V. Freret-Lorgeril et al. 10.1016/j.jvolgeores.2021.107431
- Coarse and giant particles are ubiquitous in Saharan dust export regions and are radiatively significant over the Sahara C. Ryder et al. 10.5194/acp-19-15353-2019
- Atmospheric processes affecting the separation of volcanic ash and SO<sub>2</sub> in volcanic eruptions: inferences from the May 2011 Grímsvötn eruption F. Prata et al. 10.5194/acp-17-10709-2017
- Coarse-mode mineral dust size distributions, composition and optical properties from AER-D aircraft measurements over the tropical eastern Atlantic C. Ryder et al. 10.5194/acp-18-17225-2018
- Correlating tephras and cryptotephras using glass compositional analyses and numerical and statistical methods: Review and evaluation D. Lowe et al. 10.1016/j.quascirev.2017.08.003
- Estimating the 3D shape of volcanic ash to better understand sedimentation processes and improve atmospheric dispersion modelling J. Saxby et al. 10.1016/j.epsl.2020.116075
- A Multi-Sensor Approach for Volcanic Ash Cloud Retrieval and Eruption Characterization: The 23 November 2013 Etna Lava Fountain S. Corradini et al. 10.3390/rs8010058
- Neodymium isotopes in peat reveal past local environmental disturbances K. Marcisz et al. 10.1016/j.scitotenv.2023.161859
- High-precision U–Pb geochronology of the Lundy igneous complex: implications for North Atlantic volcanism and the far-field Paleocene–Eocene ash record K. Lisica et al. 10.1144/jgs2023-140
- Epistemic uncertainties and natural hazard risk assessment – Part 1: A review of different natural hazard areas K. Beven et al. 10.5194/nhess-18-2741-2018
- A multi-dating approach to age-modelling long continental records: The 135 ka El Cañizar de Villarquemado sequence (NE Spain) B. Valero-Garcés et al. 10.1016/j.quageo.2019.101006
- Tuffaceous Mud is a Volumetrically Important Volcaniclastic Facies of Submarine Arc Volcanism and Record of Climate Change J. Gill et al. 10.1002/2017GC007300
- Calcia–magnesia–alumina-silica particle deposition prediction in gas turbines using a Eulerian–Lagrangian approach in computational fluid dynamics B. Wasistho 10.1557/jmr.2020.233
- Tephrostratigraphy of Jurassic-Cretaceous boundary beds of Western Siberia I. Panchenko et al. 10.2205/2022ES000817
- FALL3D-8.0: a computational model for atmospheric transport and deposition of particles, aerosols and radionuclides – Part 2: Model validation A. Prata et al. 10.5194/gmd-14-409-2021
- Confocal microscopy 3D imaging and bioreactivity of La Palma volcanic ash particles D. Wertheim et al. 10.1016/j.scitotenv.2023.165647
- The importance of grain size and shape in controlling the dispersion of the Vedde cryptotephra J. Saxby et al. 10.1002/jqs.3152
- The first physical evidence of subglacial volcanism under the West Antarctic Ice Sheet N. Iverson et al. 10.1038/s41598-017-11515-3
- Advancements and best practices for analysis and correlation of tephra and cryptotephra in ice N. Iverson et al. 10.1016/j.quageo.2016.09.008
- High resolution 3D confocal microscope imaging of volcanic ash particles D. Wertheim et al. 10.1016/j.scitotenv.2017.02.230
- 3D imaging of volcanic ash using the confocal microscope; a comparison of natural fragments and experimentally vesiculated volcanic glass G. Gillmore et al. 10.1007/s11069-023-05823-3
- Crossing new frontiers: extending tephrochronology as a global geoscientific research tool P. Abbott et al. 10.1002/jqs.3184
- Laboratory Investigation of Particle‐Scale Factors Affecting the Settling Velocity of Volcaniclastic Dust T. Richards‐Thomas & C. McKenna‐Neuman 10.1029/2020JD032660
- Examples of Multi-Sensor Determination of Eruptive Source Parameters of Explosive Events at Mount Etna V. Freret-Lorgeril et al. 10.3390/rs13112097
- Measuring the size of non-spherical particles and the implications for grain size analysis in volcanology H. Buckland et al. 10.1016/j.jvolgeores.2021.107257
- Standard chemical‐based tephra extraction methods significantly alter the geochemistry of volcanic glass shards C. Cooper et al. 10.1002/jqs.3169
- Determination of complex refractive indices and optical properties of volcanic ashes in the thermal infrared based on generic petrological compositions D. Piontek et al. 10.1016/j.jvolgeores.2021.107174
- Atmospheric Dispersion Modelling at the London VAAC: A Review of Developments since the 2010 Eyjafjallajökull Volcano Ash Cloud F. Beckett et al. 10.3390/atmos11040352
- Operational Response to Volcanic Ash Risks Using HOTVOLC Satellite-Based System and MOCAGE-Accident Model at the Toulouse VAAC M. Gouhier et al. 10.3390/atmos11080864
- Chicxulub-like Gale impact into an ocean/land interface on Mars: An explanation for the formation of Mount Sharp J. Dohm et al. 10.1016/j.icarus.2022.115306
- No evidence for tephra in Greenland from the historic eruption of Vesuvius in 79 CE: implications for geochronology and paleoclimatology G. Plunkett et al. 10.5194/cp-18-45-2022
- Near-source Doppler radar monitoring of tephra plumes at Etna F. Donnadieu et al. 10.1016/j.jvolgeores.2016.01.009
- Petrologic monitoring at Volcán de Fuego, Guatemala E. Liu et al. 10.1016/j.jvolgeores.2020.107044
- The fate of volcanic ash: premature or delayed sedimentation? E. Rossi et al. 10.1038/s41467-021-21568-8
- Sensitivity of Volcanic Ash Dispersion Modelling to Input Grain Size Distribution Based on Hydromagmatic and Magmatic Deposits S. Osman et al. 10.3390/atmos11060567
- Conducting volcanic ash cloud exercises: practising forecast evaluation procedures and the pull-through of scientific advice to the London VAAC F. Beckett et al. 10.1007/s00445-024-01717-9
- Vegetation structure influences the retention of airfall tephra in a sub-Arctic landscape N. Cutler et al. 10.1177/0309133316650618
- The transport of Icelandic volcanic ash: Insights from northern European cryptotephra records E. Watson et al. 10.1002/2016JB013350
- Identification of Icelandic tephras from the last two millennia in the White Sea region (Vodoprovodnoe peat bog, northwestern Russia) P. Vakhrameeva et al. 10.1002/jqs.3190
13 citations as recorded by crossref.
- Optical modeling of volcanic ash particles using ellipsoids S. Merikallio et al. 10.1002/2014JD022792
- A model sensitivity study of the impact of clouds on satellite detection and retrieval of volcanic ash A. Kylling et al. 10.5194/amt-8-1935-2015
- Spatial variability of tephra and carbon accumulation in a Holocene peatland E. Watson et al. 10.1016/j.quascirev.2015.07.025
- The impact of particle shape on fall velocity: Implications for volcanic ash dispersion modelling J. Saxby et al. 10.1016/j.jvolgeores.2018.08.006
- Uncertainty in two-channel infrared remote sensing retrievals of a well-characterised volcanic ash cloud L. Western et al. 10.1007/s00445-015-0950-y
- Low efficiency of large volcanic eruptions in transporting very fine ash into the atmosphere M. Gouhier et al. 10.1038/s41598-019-38595-7
- Do peatlands or lakes provide the most comprehensive distal tephra records? E. Watson et al. 10.1016/j.quascirev.2016.03.011
- New Zealand supereruption provides time marker for the Last Glacial Maximum in Antarctica N. Dunbar et al. 10.1038/s41598-017-11758-0
- Cryptotephras: the revolution in correlation and precision dating S. DAVIES 10.1002/jqs.2766
- Far‐travelled ash in past and future eruptions: combining tephrochronology with volcanic studies K. Cashman & A. Rust 10.1002/jqs.3159
- Optimising shape analysis to quantify volcanic ash morphology E. Liu et al. 10.1016/j.grj.2015.09.001
- Volcanic ash concentration during the 12 August 2011 Etna eruption S. Scollo et al. 10.1002/2015GL063027
- Impact of the lateral blast on the spatial pattern and grain size characteristics of the 18 May 1980 Mount St. Helens fallout deposit J. Eychenne et al. 10.1002/2015JB012116
Saved (final revised paper)
Saved (preprint)
Discussed (final revised paper)
Latest update: 14 Nov 2024
Short summary
We attempt to understand why volcanic ash grains found 100s of km from their source volcanoes (cryptotephra), which are typically 20–125 microns in length, are much larger than the size distributions measured by satellite remote sensing, which are centred at less than 10 microns. Our observations and models show that cryptotephra-sized grains are to be expected in distal plumes. Retrievals of effective radius made on simulated satellite images are shown to be biased toward smaller values.
We attempt to understand why volcanic ash grains found 100s of km from their source volcanoes...