Articles | Volume 8, issue 7
https://doi.org/10.5194/amt-8-2801-2015
https://doi.org/10.5194/amt-8-2801-2015
Research article
 | 
16 Jul 2015
Research article |  | 16 Jul 2015

An automatic collector to monitor insoluble atmospheric deposition: application for mineral dust deposition

B. Laurent, R. Losno, S. Chevaillier, J. Vincent, P. Roullet, E. Bon Nguyen, N. Ouboulmane, S. Triquet, M. Fornier, P. Raimbault, and G. Bergametti

Abstract. Deposition is one of the key terms of the mineral dust cycle. However, dust deposition remains poorly constrained in transport models simulating the atmospheric dust cycle. This is mainly due to the limited number of relevant deposition measurements. This paper aims to present an automatic collector (CARAGA), specially developed to sample the total (dry and wet) atmospheric deposition of insoluble dust in remote areas. The autonomy of the CARAGA can range from 25 days to almost 1 year depending on the programmed sampling frequency (from 1 day to 2 weeks respectively). This collector is used to sample atmospheric deposition of Saharan dust on the Frioul islands in the Gulf of Lions in the Western Mediterranean. To quantify the mineral dust mass in deposition samples, a weighing and ignition protocol is applied. Almost 2 years of continuous deposition measurements performed on a weekly sampling basis on Frioul Island are presented and discussed with air mass trajectories and satellite observations of dust. Insoluble mineral deposition measured on Frioul Island was 2.45 g m−2 for February to December 2011 and 3.16 g m−2 for January to October 2012. Nine major mineral deposition events, measured during periods with significant MODIS aerosol optical depths, were associated with air masses coming from the southern Mediterranean Basin and North Africa.

Download
Short summary
An automatic collector (CARAGA) has been developed to monitor insoluble atmospheric deposition in remote areas with a large autonomy. It is used to sample total (dry and wet) deposition on Frioul Island in the western Mediterranean Basin over which Saharan dust can be transported and deposited. To quantify the mineral dust mass in deposition samples, a weighing and ignition protocol is used. Two years of continuous deposition measurements performed on a weekly sampling basis are presented.