Articles | Volume 8, issue 12
Atmos. Meas. Tech., 8, 5277–5288, 2015
Atmos. Meas. Tech., 8, 5277–5288, 2015

Research article 17 Dec 2015

Research article | 17 Dec 2015

Implications of MODIS bow-tie distortion on aerosol optical depth retrievals, and techniques for mitigation

A. M. Sayer1,2, N. C. Hsu1, and C. Bettenhausen1,3 A. M. Sayer et al.
  • 1NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
  • 2Goddard Earth Sciences Technology And Research (GESTAR), Universities Space Research Association (USRA), Columbia, Maryland, USA
  • 3Science Systems and Applications Inc., Lanham, Maryland, USA

Abstract. The scan geometry of the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors, combined with the Earth's curvature, results in a pixel shape distortion known as the "bow-tie effect". Specifically, sensor pixels near the edge of the swath are elongated along-track and across-track compared to pixels near the centre of the swath, resulting in an increase of pixel area by up to a factor of ∼ 9 and, additionally, the overlap of pixels acquired from consecutive scans. The Deep Blue and Dark Target aerosol optical depth (AOD) retrieval algorithms aggregate sensor pixels and provide level 2 (L2) AOD at a nominal horizontal pixel size of 10 km, but the bow-tie distortion means that they also suffer from this size increase and overlap. This means that the spatial characteristics of the data vary as a function of satellite viewing zenith angle (VZA) and, for VZA > 30°, corresponding to approximately 50 % of the data, are areally enlarged by a factor of 50 % or more compared to this nominal pixel area and are not spatially independent of each other. This has implications for retrieval uncertainty and aggregated statistics, causing a narrowing of AOD distributions near the edge of the swath, as well as for data comparability from the application of similar algorithms to sensors without this level of bow-tie distortion. Additionally, the pixel overlap is not obvious to users of the L2 aerosol products because only pixel centres, not boundaries, are provided within the L2 products. A two-step procedure is proposed to mitigate the effects of this distortion on the MODIS aerosol products. The first (simple) step involves changing the order in which pixels are aggregated in L2 processing to reflect geographical location rather than scan order, which removes the bulk of the overlap between L2 pixels and slows the rate of growth of L2 pixel size vs. VZA. This can be achieved without significant changes to existing MODIS processing algorithms. The second step involves additionally changing the number of sensor pixels aggregated across-track as a function of VZA, which preserves L2 pixel size at around 10 km × 10 km across the whole swath but would require algorithmic quality assurance tests to be re-evaluated. Both of these steps also improve the extent to which the pixel locations a user would infer from the L2 data products represent the actual spatial extent of the L2 pixels.

Short summary
MODIS is a satellite sensor widely used in Earth science. Its scanning geometry results in a distortion called the ‘bow-tie effect’, which means that, depending on the location of a pixel relative to the satellite ground track, the size and shape of the pixel may be distorted. This affects data such as aerosol optical depth (AOD) derived from the measurements. This paper illustrates the bow-tie disortion’s effect on AOD and presents techniques to restore AOD data products to a more uniform grid