Articles | Volume 8, issue 12
https://doi.org/10.5194/amt-8-5277-2015
https://doi.org/10.5194/amt-8-5277-2015
Research article
 | 
17 Dec 2015
Research article |  | 17 Dec 2015

Implications of MODIS bow-tie distortion on aerosol optical depth retrievals, and techniques for mitigation

A. M. Sayer, N. C. Hsu, and C. Bettenhausen

Related authors

Analysis of a saline dust storm from the Aralkum Desert – Part 1: Consistency between multisensor satellite aerosol products
Xin Xi, Jun Wang, Zhendong Lu, Andrew M. Sayer, Jaehwa Lee, Robert C. Levy, Yujie Wang, Alexei Lyapustin, Hongqing Liu, Istvan Laszlo, Changwoo Ahn, Omar Torres, Sabur Abdullaev, James Limbacher, and Ralph A. Kahn
Atmos. Chem. Phys., 25, 7403–7429, https://doi.org/10.5194/acp-25-7403-2025,https://doi.org/10.5194/acp-25-7403-2025, 2025
Short summary
Evaluation of cloud height, optical thickness, and phase retrievals from the CHROMA algorithm applied to Sentinel-3 OLCI data
Andrew M. Sayer, Brian Cairns, Kirk D. Knobelspiesse, Luca Lelli, Chamara Rajapakshe, Scott E. Giangrande, Gareth E. Thomas, and Damao Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2005,https://doi.org/10.5194/egusphere-2025-2005, 2025
Short summary
3D cloud masking across a broad swath using multi-angle polarimetry and deep learning
Sean R. Foley, Kirk D. Knobelspiesse, Andrew M. Sayer, Meng Gao, James Hays, and Judy Hoffman
Atmos. Meas. Tech., 17, 7027–7047, https://doi.org/10.5194/amt-17-7027-2024,https://doi.org/10.5194/amt-17-7027-2024, 2024
Short summary
Simultaneous retrieval of aerosol and ocean properties from PACE HARP2 with uncertainty assessment using cascading neural network radiative transfer models
Meng Gao, Bryan A. Franz, Peng-Wang Zhai, Kirk Knobelspiesse, Andrew M. Sayer, Xiaoguang Xu, J. Vanderlei Martins, Brian Cairns, Patricia Castellanos, Guangliang Fu, Neranga Hannadige, Otto Hasekamp, Yongxiang Hu, Amir Ibrahim, Frederick Patt, Anin Puthukkudy, and P. Jeremy Werdell
Atmos. Meas. Tech., 16, 5863–5881, https://doi.org/10.5194/amt-16-5863-2023,https://doi.org/10.5194/amt-16-5863-2023, 2023
Short summary
Uncertainty in aerosol–cloud radiative forcing is driven by clean conditions
Edward Gryspeerdt, Adam C. Povey, Roy G. Grainger, Otto Hasekamp, N. Christina Hsu, Jane P. Mulcahy, Andrew M. Sayer, and Armin Sorooshian
Atmos. Chem. Phys., 23, 4115–4122, https://doi.org/10.5194/acp-23-4115-2023,https://doi.org/10.5194/acp-23-4115-2023, 2023
Short summary

Related subject area

Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Producing aerosol size distributions consistent with optical particle counter measurements using space-based measurements of aerosol extinction coefficient
Nicholas Ernest, Larry W. Thomason, and Terry Deshler
Atmos. Meas. Tech., 18, 2957–2968, https://doi.org/10.5194/amt-18-2957-2025,https://doi.org/10.5194/amt-18-2957-2025, 2025
Short summary
Star photometry with all-sky cameras to retrieve aerosol optical depth at nighttime
Roberto Román, Daniel González-Fernández, Juan Carlos Antuña-Sánchez, Celia Herrero del Barrio, Sara Herrero-Anta, África Barreto, Victoria E. Cachorro, Lionel Doppler, Ramiro González, Christoph Ritter, David Mateos, Natalia Kouremeti, Gustavo Copes, Abel Calle, María José Granados-Muñoz, Carlos Toledano, and Ángel M. de Frutos
Atmos. Meas. Tech., 18, 2847–2875, https://doi.org/10.5194/amt-18-2847-2025,https://doi.org/10.5194/amt-18-2847-2025, 2025
Short summary
Improvements in aerosol layer height retrievals from TROPOMI oxygen A-band measurements by surface albedo fitting in optimal estimation
Martin de Graaf, Maarten Sneep, Mark ter Linden, L. Gijsbert Tilstra, David P. Donovan, Gerd-Jan van Zadelhoff, and J. Pepijn Veefkind
Atmos. Meas. Tech., 18, 2553–2571, https://doi.org/10.5194/amt-18-2553-2025,https://doi.org/10.5194/amt-18-2553-2025, 2025
Short summary
Using neural networks for near-real-time aerosol retrievals from OMPS Limb Profiler measurements
Michael D. Himes, Ghassan Taha, Daniel Kahn, Tong Zhu, and Natalya A. Kramarova
Atmos. Meas. Tech., 18, 2523–2536, https://doi.org/10.5194/amt-18-2523-2025,https://doi.org/10.5194/amt-18-2523-2025, 2025
Short summary
Retrieval algorithm for aerosol effective height from the Geostationary Environment Monitoring Spectrometer (GEMS)
Sang Seo Park, Jhoon Kim, Yeseul Cho, Hanlim Lee, Junsung Park, Dong-Won Lee, Won-Jin Lee, and Deok-Rae Kim
Atmos. Meas. Tech., 18, 2241–2259, https://doi.org/10.5194/amt-18-2241-2025,https://doi.org/10.5194/amt-18-2241-2025, 2025
Short summary

Cited articles

Ahmad, Z., Franz, B. A., McClain, C. R., Kwiatowska, E. J., Werdell, J., Shettle, E. P., and Holben, B. N.: New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans, Appl. Optics, 49, 5545–5560, https://doi.org/10.1364/AO.49.005545, 2010.
Anderson, T. L., Charlson, R. J., Winker, D. M., Ogren, J. A., and Holmén, K.: Mesoscale Variations of Tropospheric Aerosols, J. Atmos. Sci., 60, 119–136, https://doi.org/10.1175/1520-0469(2003)060<0119:MVOTA>2.0.CO;2, 2003.
Bar-Or, R. Z., Altaratz, O., and Koren, I.: Global analysis of cloud field coverage and radiative properties, using morphological methods and MODIS observations, Atmos. Chem. Phys., 11, 191–200, https://doi.org/10.5194/acp-11-191-2011, 2011.
Barnes, W. L., Pagano, T. S., and Salomonson, V. V.: Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1, IEEE T. Geosci. Remote, 36, 1088–1100, https://doi.org/10.1109/36.700993, 1998.
Campagnolo, M. L., and Montano, E. L.: Estimation of Effective Resolution for Daily MODIS Gridded Surface Reflectance Products, IEEE T. Geosci. Remote, 52, 5622–5632, https://doi.org/10.1109/TGRS.2013.2291496, 2014.
Download
Short summary
MODIS is a satellite sensor widely used in Earth science. Its scanning geometry results in a distortion called the ‘bow-tie effect’, which means that, depending on the location of a pixel relative to the satellite ground track, the size and shape of the pixel may be distorted. This affects data such as aerosol optical depth (AOD) derived from the measurements. This paper illustrates the bow-tie disortion’s effect on AOD and presents techniques to restore AOD data products to a more uniform grid
Share