Articles | Volume 8, issue 2
Atmos. Meas. Tech., 8, 593–609, 2015
https://doi.org/10.5194/amt-8-593-2015
Atmos. Meas. Tech., 8, 593–609, 2015
https://doi.org/10.5194/amt-8-593-2015

Research article 05 Feb 2015

Research article | 05 Feb 2015

A quantitative analysis of the impact of wind turbines on operational Doppler weather radar data

L. Norin L. Norin
  • Atmospheric Remote Sensing Unit, Research Department, Swedish Meteorological and Hydrological Institute, Norrköping, Sweden

Abstract. In many countries wind turbines are rapidly growing in numbers as the demand for energy from renewable sources increases. The continued deployment of wind turbines can, however, be problematic for many radar systems, which are easily disturbed by turbines located in the radar line of sight. Wind turbines situated in the vicinity of Doppler weather radars can lead to erroneous precipitation estimates as well as to inaccurate wind and turbulence measurements. This paper presents a quantitative analysis of the impact of a wind farm, located in southeastern Sweden, on measurements from a nearby Doppler weather radar. The analysis is based on 6 years of operational radar data. In order to evaluate the impact of the wind farm, average values of all three spectral moments (the radar reflectivity factor, absolute radial velocity, and spectrum width) of the nearby Doppler weather radar were calculated, using data before and after the construction of the wind farm. It is shown that all spectral moments, from a large area at and downrange from the wind farm, were impacted by the wind turbines. It was also found that data from radar cells far above the wind farm (near 3 km altitude) were affected by the wind farm. It is shown that this in part can be explained by detection by the radar sidelobes and by scattering off increased levels of dust and turbulence. In a detailed analysis, using data from a single radar cell, frequency distributions of all spectral moments were used to study the competition between the weather signal and wind turbine clutter. It is shown that, when weather echoes give rise to higher reflectivity values than those of the wind farm, the negative impact of the wind turbines is greatly reduced for all spectral moments.

Download
Short summary
This paper presents a quantitative analysis of the impact of a wind farm on measurements from a nearby Doppler weather radar, based on 6 years of operational radar data. We show that radar measurements from a large area at and downrange from the wind farm as well as up to 3 km above the wind turbines were impacted. We also show that, when weather echoes give rise to higher reflectivity values than those of the wind farm, the negative impact of the wind turbines is greatly reduced.