Articles | Volume 8, issue 2
https://doi.org/10.5194/amt-8-593-2015
https://doi.org/10.5194/amt-8-593-2015
Research article
 | 
05 Feb 2015
Research article |  | 05 Feb 2015

A quantitative analysis of the impact of wind turbines on operational Doppler weather radar data

L. Norin

Related authors

Observations of anomalous propagation over waters near Sweden
Lars Norin
Atmos. Meas. Tech., 16, 1789–1801, https://doi.org/10.5194/amt-16-1789-2023,https://doi.org/10.5194/amt-16-1789-2023, 2023
Short summary
The sensitivity of snowfall to weather states over Sweden
Lars Norin, Abhay Devasthale, and Tristan S. L'Ecuyer
Atmos. Meas. Tech., 10, 3249–3263, https://doi.org/10.5194/amt-10-3249-2017,https://doi.org/10.5194/amt-10-3249-2017, 2017
Short summary
Wind turbine impact on operational weather radar I/Q data: characterisation and filtering
Lars Norin
Atmos. Meas. Tech., 10, 1739–1753, https://doi.org/10.5194/amt-10-1739-2017,https://doi.org/10.5194/amt-10-1739-2017, 2017
Short summary
Intercomparison of snowfall estimates derived from the CloudSat Cloud Profiling Radar and the ground-based weather radar network over Sweden
L. Norin, A. Devasthale, T. S. L'Ecuyer, N. B. Wood, and M. Smalley
Atmos. Meas. Tech., 8, 5009–5021, https://doi.org/10.5194/amt-8-5009-2015,https://doi.org/10.5194/amt-8-5009-2015, 2015
Short summary
The large-scale spatio-temporal variability of precipitation over Sweden observed from the weather radar network
A. Devasthale and L. Norin
Atmos. Meas. Tech., 7, 1605–1617, https://doi.org/10.5194/amt-7-1605-2014,https://doi.org/10.5194/amt-7-1605-2014, 2014

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Observations of anomalous propagation over waters near Sweden
Lars Norin
Atmos. Meas. Tech., 16, 1789–1801, https://doi.org/10.5194/amt-16-1789-2023,https://doi.org/10.5194/amt-16-1789-2023, 2023
Short summary
Validation of Aeolus wind profiles using ground-based lidar and radiosonde observations at Réunion island and the Observatoire de Haute-Provence
Mathieu Ratynski, Sergey Khaykin, Alain Hauchecorne, Robin Wing, Jean-Pierre Cammas, Yann Hello, and Philippe Keckhut
Atmos. Meas. Tech., 16, 997–1016, https://doi.org/10.5194/amt-16-997-2023,https://doi.org/10.5194/amt-16-997-2023, 2023
Short summary
Dual-frequency spectral radar retrieval of snowfall microphysics: a physics-driven deep-learning approach
Anne-Claire Billault-Roux, Gionata Ghiggi, Louis Jaffeux, Audrey Martini, Nicolas Viltard, and Alexis Berne
Atmos. Meas. Tech., 16, 911–940, https://doi.org/10.5194/amt-16-911-2023,https://doi.org/10.5194/amt-16-911-2023, 2023
Short summary
High-resolution 3D winds derived from a modified WISSDOM synthesis scheme using multiple Doppler lidars and observations
Chia-Lun Tsai, Kwonil Kim, Yu-Chieng Liou, and GyuWon Lee
Atmos. Meas. Tech., 16, 845–869, https://doi.org/10.5194/amt-16-845-2023,https://doi.org/10.5194/amt-16-845-2023, 2023
Short summary
Atmospheric boundary layer height from ground-based remote sensing: a review of capabilities and limitations
Simone Kotthaus, Juan Antonio Bravo-Aranda, Martine Collaud Coen, Juan Luis Guerrero-Rascado, Maria João Costa, Domenico Cimini, Ewan J. O'Connor, Maxime Hervo, Lucas Alados-Arboledas, María Jiménez-Portaz, Lucia Mona, Dominique Ruffieux, Anthony Illingworth, and Martial Haeffelin
Atmos. Meas. Tech., 16, 433–479, https://doi.org/10.5194/amt-16-433-2023,https://doi.org/10.5194/amt-16-433-2023, 2023
Short summary

Cited articles

Bodine, D., Michaud, D., Palmer, R. D., Heinselman, P. L., Brotzge, J., Gasperoni, N., Cheong, B. L., Xue, M., and Gao, J.: Understanding Radar Refractivity: Sources of Uncertainty, J. Appl. Meteorol. Clim., 50, 2543–2560, https://doi.org/10.1175/2011JAMC2648.1, 2011.
Burgess, D. W., Crum, T. D., and Vogt, R. J.: Impacts of Wind Farms on WSR-88D Radars, in: 24th International Conference on Interactive Information and Processing Systems for Meteorology, Oceanography, and Hydrology, New Orleans, LA, United States, American Meteorological Society, paper 6B.3, 2008.
Crum, T. and Ciardi, E.: Wind Farms and the WSR-88D: An Update, Nextrad Now, 20, 17–22, 2010.
Crum, T., Ciardi, E., and Sandifer, J.: Wind Farms: Coming Soon to a WSR-88D Near You, Nexrad Now, 18, 1–7, 2008.
Department of Defense: The Effect of Windmill Farms on Military Readiness, Report to the congressional defense committees, Office of the Director of Defense Research and Engineering, 2006.
Download
Short summary
This paper presents a quantitative analysis of the impact of a wind farm on measurements from a nearby Doppler weather radar, based on 6 years of operational radar data. We show that radar measurements from a large area at and downrange from the wind farm as well as up to 3 km above the wind turbines were impacted. We also show that, when weather echoes give rise to higher reflectivity values than those of the wind farm, the negative impact of the wind turbines is greatly reduced.