Articles | Volume 9, issue 4
https://doi.org/10.5194/amt-9-1637-2016
https://doi.org/10.5194/amt-9-1637-2016
Research article
 | 
13 Apr 2016
Research article |  | 13 Apr 2016

An automatic precipitation-phase distinction algorithm for optical disdrometer data over the global ocean

Jörg Burdanowitz, Christian Klepp, and Stephan Bakan

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Download
Short summary
We develop a new automatic algorithm to distinguish oceanic precipitation into rain, snow and mixed phase using optical disdrometers deployed on board research vessels. In combination, air temperature, relative humidity and the maximum precipitation particle diameter outperform human observer data and yield highest skill to predict the precipitation phase. This knowledge allows deriving accurate rain and snowfall rates with dense global ocean sampling, which enables satellite sensor validation.