Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
Volume 9, issue 4
Atmos. Meas. Tech., 9, 1817–1832, 2016
https://doi.org/10.5194/amt-9-1817-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: NETCARE (Network on Aerosols and Climate: Addressing Key Uncertainties...

Atmos. Meas. Tech., 9, 1817–1832, 2016
https://doi.org/10.5194/amt-9-1817-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 27 Apr 2016

Research article | 27 Apr 2016

A microbolometer-based far infrared radiometer to study thin ice clouds in the Arctic

Quentin Libois et al.

Viewed

Total article views: 1,527 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
846 622 59 1,527 63 59
  • HTML: 846
  • PDF: 622
  • XML: 59
  • Total: 1,527
  • BibTeX: 63
  • EndNote: 59
Views and downloads (calculated since 18 Jan 2016)
Cumulative views and downloads (calculated since 18 Jan 2016)

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 27 Oct 2020
Publications Copernicus
Download
Short summary
Here we present a radiometer, FIRR, aimed at measuring atmospheric radiation in the far infrared, an underexplored region of the Earth spectrum. The FIRR is a prototype for the planned TICFIRE satellite mission dedicated to studying thin ice clouds in polar regions. Preliminary in situ measurements compare well with radiative transfer simulations. This highlights the high sensitivity of the FIRR to water vapor content and cloud physical properties, paving the way for new retrieval algorithms.
Here we present a radiometer, FIRR, aimed at measuring atmospheric radiation in the far...
Citation