Articles | Volume 9, issue 5
Atmos. Meas. Tech., 9, 2393–2408, 2016
https://doi.org/10.5194/amt-9-2393-2016
Atmos. Meas. Tech., 9, 2393–2408, 2016
https://doi.org/10.5194/amt-9-2393-2016
Research article
 | Highlight paper
01 Jun 2016
Research article  | Highlight paper | 01 Jun 2016

High spatial resolution imaging of methane and other trace gases with the airborne Hyperspectral Thermal Emission Spectrometer (HyTES)

Glynn C. Hulley et al.

Viewed

Total article views: 5,680 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
3,518 2,025 137 5,680 122 139
  • HTML: 3,518
  • PDF: 2,025
  • XML: 137
  • Total: 5,680
  • BibTeX: 122
  • EndNote: 139
Views and downloads (calculated since 25 Feb 2016)
Cumulative views and downloads (calculated since 25 Feb 2016)

Cited

Saved (preprint)

Latest update: 29 Jun 2022
Download
Short summary
Using data from a new airborne Hyperspectral Thermal Emission Spectrometer (HyTES) instrument, we present a technique for the detection and wide-area mapping of emission plumes of methane and other atmospheric trace gas species over challenging and diverse environmental conditions with high spatial resolution, that permits direct attribution to sources in complex environments.