Articles | Volume 9, issue 9
Research article
29 Sep 2016
Research article |  | 29 Sep 2016

Comparison of GPS tropospheric delays derived from two consecutive EPN reprocessing campaigns from the point of view of climate monitoring

Zofia Baldysz, Grzegorz Nykiel, Andrzej Araszkiewicz, Mariusz Figurski, and Karolina Szafranek

Abstract. The main purpose of this research was to acquire information about consistency of ZTD (zenith total delay) linear trends and seasonal components between two consecutive GPS reprocessing campaigns. The analysis concerned two sets of the ZTD time series which were estimated during EUREF (Reference Frame Sub-Commission for Europe) EPN (Permanent Network) reprocessing campaigns according to 2008 and 2015 MUT AC (Military University of Technology Analysis Centre) scenarios. Firstly, Lomb–Scargle periodograms were generated for 57 EPN stations to obtain a characterisation of oscillations occurring in the ZTD time series. Then, the values of seasonal components and linear trends were estimated using the LSE (least squares estimation) approach. The Mann–Kendall trend test was also carried out to verify the presence of linear long-term ZTD changes. Finally, differences in seasonal signals and linear trends between these two data sets were investigated. All these analyses were conducted for the ZTD time series of two lengths: a shortened 16-year series and a full 18-year one. In the case of spectral analysis, amplitudes of the annual and semi-annual periods were almost exactly the same for both reprocessing campaigns. Exceptions were found for only a few stations and they did not exceed 1 mm. The estimated trends were also similar. However, for the reprocessing performed in 2008, the trends values were usually higher. In general, shortening of the analysed time period by 2 years resulted in a decrease of the linear trends values of about 0.07 mm yr−1. This was confirmed by analyses based on two data sets.

Short summary
In this paper two official processing strategies of GPS observations were analysed. The main purpose was to assess differences in long-term (linear trends) and short-term (oscillations) changes between these two sets of data. Investigation was based on 18-year and 16-year time series and showed that, despite the general consistency, for selected stations a change of processing strategy may have caused significant differences (compared to the uncertainties) in estimated linear trend values.