Articles | Volume 9, issue 3
https://doi.org/10.5194/amt-9-939-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/amt-9-939-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
The airborne mass spectrometer AIMS – Part 1: AIMS-H2O for UTLS water vapor measurements
Deutsches Zentrum für Luft- und Raumfahrt, Institut
für Physik der Atmosphäre, Oberpfaffenhofen, Germany
Christiane Voigt
Deutsches Zentrum für Luft- und Raumfahrt, Institut
für Physik der Atmosphäre, Oberpfaffenhofen, Germany
Johannes Gutenberg-Universität, Institut für
Physik der Atmosphäre, Mainz, Germany
Tina Jurkat
Deutsches Zentrum für Luft- und Raumfahrt, Institut
für Physik der Atmosphäre, Oberpfaffenhofen, Germany
Troy Thornberry
NOAA Earth System Research Laboratory, Chemical Sciences
Division, Boulder, Colorado, USA
University of Colorado, CIRES, Boulder, Colorado,
USA
David W. Fahey
NOAA Earth System Research Laboratory, Chemical Sciences
Division, Boulder, Colorado, USA
University of Colorado, CIRES, Boulder, Colorado,
USA
Ru-Shan Gao
NOAA Earth System Research Laboratory, Chemical Sciences
Division, Boulder, Colorado, USA
Romy Schlage
Deutsches Zentrum für Luft- und Raumfahrt, Institut
für Physik der Atmosphäre, Oberpfaffenhofen, Germany
Dominik Schäuble
Institute for Advanced Sustainability Studies, Potsdam,
Germany
Martin Zöger
Deutsches Zentrum für Luft- und Raumfahrt, Flight
Experiments, Oberpfaffenhofen, Germany
Viewed
Total article views: 6,947 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 21 Dec 2015)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
5,411 | 1,395 | 141 | 6,947 | 157 | 178 |
- HTML: 5,411
- PDF: 1,395
- XML: 141
- Total: 6,947
- BibTeX: 157
- EndNote: 178
Total article views: 6,148 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 07 Mar 2016)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
4,924 | 1,097 | 127 | 6,148 | 145 | 165 |
- HTML: 4,924
- PDF: 1,097
- XML: 127
- Total: 6,148
- BibTeX: 145
- EndNote: 165
Total article views: 799 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 21 Dec 2015)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
487 | 298 | 14 | 799 | 12 | 13 |
- HTML: 487
- PDF: 298
- XML: 14
- Total: 799
- BibTeX: 12
- EndNote: 13
Cited
19 citations as recorded by crossref.
- Porous aerosol in degassing plumes of Mt. Etna and Mt. Stromboli V. Shcherbakov et al. 10.5194/acp-16-11883-2016
- ML-CIRRUS: The Airborne Experiment on Natural Cirrus and Contrail Cirrus with the High-Altitude Long-Range Research Aircraft HALO C. Voigt et al. 10.1175/BAMS-D-15-00213.1
- Powering aircraft with 100 % sustainable aviation fuel reduces ice crystals in contrails R. Märkl et al. 10.5194/acp-24-3813-2024
- Differences in microphysical properties of cirrus at high and mid-latitudes E. De La Torre Castro et al. 10.5194/acp-23-13167-2023
- Intercomparison of midlatitude tropospheric and lower-stratospheric water vapor measurements and comparison to ECMWF humidity data S. Kaufmann et al. 10.5194/acp-18-16729-2018
- Coupling aerosols to (cirrus) clouds in the global EMAC-MADE3 aerosol–climate model M. Righi et al. 10.5194/gmd-13-1635-2020
- Chlorine partitioning in the lowermost Arctic vortex during the cold winter 2015/2016 A. Marsing et al. 10.5194/acp-19-10757-2019
- Mountain waves modulate the water vapor distribution in the UTLS R. Heller et al. 10.5194/acp-17-14853-2017
- Statistical analysis of contrail to cirrus evolution during the Contrail and Cirrus Experiment (CONCERT) A. Chauvigné et al. 10.5194/acp-18-9803-2018
- Lagrangian matches between observations from aircraft, lidar and radar in a warm conveyor belt crossing orography M. Boettcher et al. 10.5194/acp-21-5477-2021
- Pico-Light H2O: intercomparison of in situ water vapour measurements during the AsA 2022 campaign M. Ghysels et al. 10.5194/amt-17-3495-2024
- Airborne limb-imaging measurements of temperature, HNO<sub>3</sub>, O<sub>3</sub>, ClONO<sub>2</sub>, H<sub>2</sub>O and CFC-12 during the Arctic winter 2015/2016: characterization, in situ validation and comparison to Aura/MLS S. Johansson et al. 10.5194/amt-11-4737-2018
- Comparing airborne and satellite retrievals of cloud optical thickness and particle effective radius using a spectral radiance ratio technique: two case studies for cirrus and deep convective clouds T. Krisna et al. 10.5194/acp-18-4439-2018
- Evaluation of the IAGOS-Core GHG package H<sub>2</sub>O measurements during the DENCHAR airborne inter-comparison campaign in 2011 A. Filges et al. 10.5194/amt-11-5279-2018
- HAI, a new airborne, absolute, twin dual-channel, multi-phase TDLAS-hygrometer: background, design, setup, and first flight data B. Buchholz et al. 10.5194/amt-10-35-2017
- Depletion of ozone and reservoir species of chlorine and nitrogen oxide in the lower Antarctic polar vortex measured from aircraft T. Jurkat et al. 10.1002/2017GL073270
- The airborne mass spectrometer AIMS – Part 2: Measurements of trace gases with stratospheric or tropospheric origin in the UTLS T. Jurkat et al. 10.5194/amt-9-1907-2016
- Observations of microphysical properties and radiative effects of a contrail cirrus outbreak over the North Atlantic Z. Wang et al. 10.5194/acp-23-1941-2023
- The airborne mass spectrometer AIMS – Part 2: Measurements of trace gases with stratospheric or tropospheric origin in the UTLS T. Jurkat et al. 10.5194/amtd-8-13567-2015
18 citations as recorded by crossref.
- Porous aerosol in degassing plumes of Mt. Etna and Mt. Stromboli V. Shcherbakov et al. 10.5194/acp-16-11883-2016
- ML-CIRRUS: The Airborne Experiment on Natural Cirrus and Contrail Cirrus with the High-Altitude Long-Range Research Aircraft HALO C. Voigt et al. 10.1175/BAMS-D-15-00213.1
- Powering aircraft with 100 % sustainable aviation fuel reduces ice crystals in contrails R. Märkl et al. 10.5194/acp-24-3813-2024
- Differences in microphysical properties of cirrus at high and mid-latitudes E. De La Torre Castro et al. 10.5194/acp-23-13167-2023
- Intercomparison of midlatitude tropospheric and lower-stratospheric water vapor measurements and comparison to ECMWF humidity data S. Kaufmann et al. 10.5194/acp-18-16729-2018
- Coupling aerosols to (cirrus) clouds in the global EMAC-MADE3 aerosol–climate model M. Righi et al. 10.5194/gmd-13-1635-2020
- Chlorine partitioning in the lowermost Arctic vortex during the cold winter 2015/2016 A. Marsing et al. 10.5194/acp-19-10757-2019
- Mountain waves modulate the water vapor distribution in the UTLS R. Heller et al. 10.5194/acp-17-14853-2017
- Statistical analysis of contrail to cirrus evolution during the Contrail and Cirrus Experiment (CONCERT) A. Chauvigné et al. 10.5194/acp-18-9803-2018
- Lagrangian matches between observations from aircraft, lidar and radar in a warm conveyor belt crossing orography M. Boettcher et al. 10.5194/acp-21-5477-2021
- Pico-Light H2O: intercomparison of in situ water vapour measurements during the AsA 2022 campaign M. Ghysels et al. 10.5194/amt-17-3495-2024
- Airborne limb-imaging measurements of temperature, HNO<sub>3</sub>, O<sub>3</sub>, ClONO<sub>2</sub>, H<sub>2</sub>O and CFC-12 during the Arctic winter 2015/2016: characterization, in situ validation and comparison to Aura/MLS S. Johansson et al. 10.5194/amt-11-4737-2018
- Comparing airborne and satellite retrievals of cloud optical thickness and particle effective radius using a spectral radiance ratio technique: two case studies for cirrus and deep convective clouds T. Krisna et al. 10.5194/acp-18-4439-2018
- Evaluation of the IAGOS-Core GHG package H<sub>2</sub>O measurements during the DENCHAR airborne inter-comparison campaign in 2011 A. Filges et al. 10.5194/amt-11-5279-2018
- HAI, a new airborne, absolute, twin dual-channel, multi-phase TDLAS-hygrometer: background, design, setup, and first flight data B. Buchholz et al. 10.5194/amt-10-35-2017
- Depletion of ozone and reservoir species of chlorine and nitrogen oxide in the lower Antarctic polar vortex measured from aircraft T. Jurkat et al. 10.1002/2017GL073270
- The airborne mass spectrometer AIMS – Part 2: Measurements of trace gases with stratospheric or tropospheric origin in the UTLS T. Jurkat et al. 10.5194/amt-9-1907-2016
- Observations of microphysical properties and radiative effects of a contrail cirrus outbreak over the North Atlantic Z. Wang et al. 10.5194/acp-23-1941-2023
Saved (final revised paper)
Latest update: 13 Nov 2024
Short summary
We present the development of a new airborne mass spectrometer AIMS-H2O for the fast and accurate measurement of water vapor in the upper troposphere and lower stratosphere. The high accuracy needed for e.g. quantification of atmospheric water vapor transport processes or cloud formation is achieved by an in-flight calibration of the instrument. AIMS-H2O is deployed on the DLR research aircraft HALO and Falcon where it covers a range of water vapor mixing ratios from 1 to 500 ppmv.
We present the development of a new airborne mass spectrometer AIMS-H2O for the fast and...
Special issue