Preprints
https://doi.org/10.5194/amt-2020-219
https://doi.org/10.5194/amt-2020-219
18 Jun 2020
 | 18 Jun 2020
Status: this preprint was under review for the journal AMT but the revision was not accepted.

Use of filter radiometer measurements to derive local photolysis rates and for future monitoring network application

Hannah L. Walker, Mathew R. Heal, Christine F. Braban, Mhairi Coyle, Sarah R. Leeson, Ivan Simmons, Matthew R. Jones, Richard Kift, and Marsailidh M. Twigg

Abstract. Production of hydroxyl (OH) radicals is frequently dominated by the photolysis of tropospheric ozone (O3). However, photolysis of nocturnal radical reservoirs, such as nitrous acid (HONO) and nitryl chloride (ClNO2), also produces radicals (OH and Cl atoms) that contribute to the oxidising capacity of the local atmosphere, and initiate many radical-chain reactions that lead to the formation of harmful secondary pollutants. Photolysis of nitric acid (HNO3) is also a minor radical production mechanism. In this paper, locally representative photolysis rate constants (j-values) for these molecules are shown to be critical for quantifying and understanding the rate of radical production in a local atmosphere.

The first long-term 4-π filter radiometer dataset in the UK (21 November 2018–20 November 2019) available for direct atmospheric model validation is reported. Measurements were made at Auchencorth Moss, a Scottish rural background site, and j(NO2) is used to generate a measurement-driven adjustment factor (MDAF) for calculated j-values that accounts for local changes in meteorological variables without significantly increasing computational cost.

Modelled clear-sky j-values and actinic flux for Auchencorth Moss were generated using the Tropospheric Ultraviolet and Visible radiation model (TUV; v.5.3.1). Applying the MDAF metric resulted in the calculated photolytic production rate of OH radicals, from all sources considered, being ~40 % lower over the year. Photolysis of HONO resulted in an increased rate of OH production compared to that from O3 in low-light conditions, such as sunrise and sunset (Solar Zenith Angle > 80°). Hydroxyl radical production from HONO photolysis exceeded that from O3 consistently throughout the day during the winter and autumn (by a factor of 5 and 2.1, respectively). Radical production rates from HONO and ClNO2 reached maximum values during the early morning hours of summer (06:00–09:00 UTC), with OH produced at a rate of 1.06 × 106 OH radicals cm−3 s−1, and Cl radicals at 3.20 × 104 Cl radicals cm−3 s−1, with the MDAF metric applied.

This first application of the MDAF j-values demonstrates an efficient measurement and computational approach to improve modelling of the local atmospheric photochemistry that drives NO2, O3 and PM pollution levels. The incorporation of local radiation measurements in measurement networks, and the consequent greater spatial resolution of locally-relevant photolysis coefficients in model photolysis parameterisations, will improve the accuracy of assessment of air pollution and policy-intervention impacts.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Hannah L. Walker, Mathew R. Heal, Christine F. Braban, Mhairi Coyle, Sarah R. Leeson, Ivan Simmons, Matthew R. Jones, Richard Kift, and Marsailidh M. Twigg
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Hannah L. Walker, Mathew R. Heal, Christine F. Braban, Mhairi Coyle, Sarah R. Leeson, Ivan Simmons, Matthew R. Jones, Richard Kift, and Marsailidh M. Twigg

Data sets

Auchencorth Moss Atmospheric Observatory (AU): Hourly averaged 4-pi filter radiometer measurements (21/11/2018 - 20/11/2019) near Edinburgh (UK) H. L. Walker, M. R. Heal, C. F. Braban, M. Coyle, S. R. Leeson, I. Simmons, M. R. Jones, and M. M. Twigg https://doi.org/10.5285/f9a0eaf6cfb8479f89a62ecbc091ec7d

Hannah L. Walker, Mathew R. Heal, Christine F. Braban, Mhairi Coyle, Sarah R. Leeson, Ivan Simmons, Matthew R. Jones, Richard Kift, and Marsailidh M. Twigg

Viewed

Total article views: 911 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
566 290 55 911 57 68
  • HTML: 566
  • PDF: 290
  • XML: 55
  • Total: 911
  • BibTeX: 57
  • EndNote: 68
Views and downloads (calculated since 18 Jun 2020)
Cumulative views and downloads (calculated since 18 Jun 2020)

Viewed (geographical distribution)

Total article views: 964 (including HTML, PDF, and XML) Thereof 960 with geography defined and 4 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 10 Oct 2024
Download
Short summary
Quantifying local photolysis rates are critical to understanding local air quality. We present the first year of a long-term filter radiometer measurement dataset in the UK (Auchencorth Moss, SE Scotland), and demonstrate the potential application of this data to account for variations in local meteorology (e.g. clouds and aerosols) in atmospheric models, which otherwise increase computational cost. The scientific and policy value of these measurements are also emphasised.